File size: 2,612 Bytes
5e9fcc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
---
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: distilhubert-finetuned-gtzan
  results:
  - task:
      name: Audio Classification
      type: audio-classification
    dataset:
      name: GTZAN
      type: marsyas/gtzan
      config: all
      split: train
      args: all
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.85
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilhubert-finetuned-gtzan

This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6405
- Accuracy: 0.85

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.2068        | 1.0   | 57   | 2.1236          | 0.41     |
| 1.635         | 2.0   | 114  | 1.5471          | 0.57     |
| 1.19          | 3.0   | 171  | 1.1878          | 0.68     |
| 1.0898        | 4.0   | 228  | 1.0190          | 0.71     |
| 0.73          | 5.0   | 285  | 0.8323          | 0.73     |
| 0.6549        | 6.0   | 342  | 0.7693          | 0.76     |
| 0.4567        | 7.0   | 399  | 0.7017          | 0.8      |
| 0.379         | 8.0   | 456  | 0.7082          | 0.79     |
| 0.2807        | 9.0   | 513  | 0.6414          | 0.81     |
| 0.1668        | 10.0  | 570  | 0.6464          | 0.83     |
| 0.167         | 11.0  | 627  | 0.6404          | 0.85     |
| 0.1125        | 12.0  | 684  | 0.6338          | 0.83     |
| 0.0893        | 13.0  | 741  | 0.6447          | 0.86     |
| 0.0604        | 14.0  | 798  | 0.6332          | 0.85     |
| 0.0663        | 15.0  | 855  | 0.6405          | 0.85     |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.2