File size: 2,207 Bytes
5e9fcc8 2910951 5e9fcc8 2910951 5e9fcc8 2910951 5e9fcc8 2910951 5e9fcc8 2910951 5e9fcc8 2910951 5e9fcc8 2910951 5e9fcc8 2910951 5e9fcc8 2910951 5e9fcc8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
---
license: apache-2.0
base_model: chaouch/distilhubert-finetuned-gtzan
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: distilhubert-finetuned-gtzan-finetuned-gtzan
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: all
split: train
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.9666666666666667
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilhubert-finetuned-gtzan-finetuned-gtzan
This model is a fine-tuned version of [chaouch/distilhubert-finetuned-gtzan](https://huggingface.co/chaouch/distilhubert-finetuned-gtzan) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1733
- Accuracy: 0.9667
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 6
- eval_batch_size: 6
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 7
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.026 | 1.0 | 135 | 0.2289 | 0.9444 |
| 0.1351 | 2.0 | 270 | 0.1379 | 0.9778 |
| 0.01 | 3.0 | 405 | 0.2310 | 0.9667 |
| 0.0053 | 4.0 | 540 | 0.1727 | 0.9667 |
| 0.0002 | 5.0 | 675 | 0.1703 | 0.9667 |
| 0.0002 | 6.0 | 810 | 0.1722 | 0.9667 |
| 0.0002 | 7.0 | 945 | 0.1733 | 0.9667 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.2
|