--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.85 --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.6405 - Accuracy: 0.85 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.2068 | 1.0 | 57 | 2.1236 | 0.41 | | 1.635 | 2.0 | 114 | 1.5471 | 0.57 | | 1.19 | 3.0 | 171 | 1.1878 | 0.68 | | 1.0898 | 4.0 | 228 | 1.0190 | 0.71 | | 0.73 | 5.0 | 285 | 0.8323 | 0.73 | | 0.6549 | 6.0 | 342 | 0.7693 | 0.76 | | 0.4567 | 7.0 | 399 | 0.7017 | 0.8 | | 0.379 | 8.0 | 456 | 0.7082 | 0.79 | | 0.2807 | 9.0 | 513 | 0.6414 | 0.81 | | 0.1668 | 10.0 | 570 | 0.6464 | 0.83 | | 0.167 | 11.0 | 627 | 0.6404 | 0.85 | | 0.1125 | 12.0 | 684 | 0.6338 | 0.83 | | 0.0893 | 13.0 | 741 | 0.6447 | 0.86 | | 0.0604 | 14.0 | 798 | 0.6332 | 0.85 | | 0.0663 | 15.0 | 855 | 0.6405 | 0.85 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.2