--- tags: - llama - merge --- Five different instruction-tuned models (which I'm sure are intuitively obvious from the name) merged using the methodology described in [Resolving Interference When Merging Models](https://arxiv.org/abs/2306.01708). In theory this should retain more of the capabilites of the constituent models than a straight linear merge would. In my testing, it feels quite capable. Base model used for the merge: [TheBloke/Llama-2-13B-fp16](https://huggingface.co/TheBloke/Llama-2-13B-fp16) Models merged in: * [OpenOrca-Platypus2-13B](https://huggingface.co/Open-Orca/OpenOrca-Platypus2-13B) * [limarp-13b-merged](https://huggingface.co/Oniichat/limarp-13b-merged) * [Nous-Hermes-Llama2-13b](https://huggingface.co/NousResearch/Nous-Hermes-Llama2-13b) * [chronos-13b-v2](https://huggingface.co/elinas/chronos-13b-v2) * [airoboros-l2-13b-gpt4-1.4.1](https://huggingface.co/jondurbin/airoboros-l2-13b-gpt4-1.4.1) Works quite well with Alpaca-style prompts: ``` ### Instruction: ... ### Response: ``` The script I used to perform the merge is available [here](https://github.com/cg123/ties-merge). The command that produced this model: ``` python ties_merge.py TheBloke/Llama-2-13B-fp16 ./Chronorctypus-Limarobormes-13b --merge elinas/chronos-13b-v2 --merge Open-Orca/OpenOrca-Platypus2-13B --merge Oniichat/limarp-13b-merged --merge jondurbin/airoboros-l2-13b-gpt4-1.4.1 --merge NousResearch/Nous-Hermes-Llama2-13b --cuda ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_chargoddard__Chronorctypus-Limarobormes-13b) | Metric | Value | |-----------------------|---------------------------| | Avg. | 49.88 | | ARC (25-shot) | 59.9 | | HellaSwag (10-shot) | 82.75 | | MMLU (5-shot) | 58.45 | | TruthfulQA (0-shot) | 51.9 | | Winogrande (5-shot) | 74.43 | | GSM8K (5-shot) | 3.87 | | DROP (3-shot) | 17.89 |