--- license: cc-by-nc-4.0 datasets: - pankajmathur/orca_mini_v1_dataset - openai/summarize_from_feedback - PygmalionAI/PIPPA - chargoddard/rpguild - lemonilia/LimaRP - PKU-Alignment/PKU-SafeRLHF - Intel/orca_dpo_pairs - argilla/ultrafeedback-binarized-preferences --- Another experiment in the line of [loyal-piano-m7](https://huggingface.co/chargoddard/loyal-piano-m7). Steps taken to produce this model: * Train loyal-piano-m7 * cDPO with HuggingFaceH4/ultrafeedback_binarized to produce loyal-piano-m7-cdpo * Train another model with different sampling of the same source datasets as loyal-piano, let's call it servile-harpsichord * cDPO servile-harpsichord with argilla/ultrafeedback-binarized-preferences, Intel/orca_dpo_pairs, and a helpfulness-only version of PKU-Alignment/PKU-SafeRLHF * TIES merge several checkpoints of servile-harpsichord-cdpo with loyal-piano-m7-cdpo Local benchmarks show the result to be better than any of the individual components. Let's see if that holds up! Trained using the Alpaca prompt format. Configuration for final merge: ```yml models: - model: chargoddard/loyal-piano-m7-cdpo parameters: density: 1.0 weight: 1.0 - model: /home/ubuntu/servile-harpsichord-cdpo/checkpoint-4186 parameters: weight: 0.1 - model: /home/ubuntu/servile-harpsichord-cdpo/checkpoint-5796 parameters: weight: 0.2 - model: /home/ubuntu/servile-harpsichord-cdpo/checkpoint-6118 parameters: weight: 0.3 - model: /home/ubuntu/servile-harpsichord-cdpo/final parameters: weight: 0.4 merge_method: ties base_model: mistralai/Mistral-7B-v0.1 dtype: bfloat16 parameters: density: 0.4 normalize: true int8_mask: true ```