--- license: apache-2.0 tags: - generated_from_trainer datasets: - tweet_eval metrics: - accuracy - f1 base_model: distilbert-base-uncased model-index: - name: distilbert-base-uncased-finetuned-tweet_eval-offensive results: - task: type: text-classification name: Text Classification dataset: name: tweet_eval type: tweet_eval args: offensive metrics: - type: accuracy value: 0.8089123867069486 name: Accuracy - type: f1 value: 0.8060281168230459 name: F1 --- # distilbert-base-uncased-finetuned-tweet_eval-offensive This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 0.4185 - Accuracy: 0.8089 - F1: 0.8060 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 187 | 0.4259 | 0.8059 | 0.7975 | | 0.46 | 2.0 | 374 | 0.4185 | 0.8089 | 0.8060 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.9.1 - Datasets 2.1.0 - Tokenizers 0.12.1