charlieoneill
commited on
Update pipeline.py
Browse files- pipeline.py +32 -15
pipeline.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
from transformers import AutoTokenizer, AutoModel
|
2 |
import torch
|
3 |
-
from typing import List
|
4 |
import torch.nn as nn
|
|
|
5 |
|
6 |
class PersonEmbeddings(nn.Module):
|
7 |
def __init__(self, model_id: str):
|
@@ -14,32 +14,49 @@ class PersonEmbeddings(nn.Module):
|
|
14 |
)
|
15 |
|
16 |
def forward(self, input_ids, attention_mask):
|
17 |
-
outputs = self.base_model(
|
18 |
-
input_ids=input_ids,
|
19 |
-
attention_mask=attention_mask
|
20 |
-
)
|
21 |
last_hidden = outputs.last_hidden_state # (B, seq_len, 768)
|
22 |
mean_pooled = last_hidden.mean(dim=1) # (B, 768)
|
23 |
embeddings = self.projection(mean_pooled) # (B, 1536)
|
24 |
return embeddings
|
25 |
|
26 |
class CustomEmbeddingPipeline:
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
ckpt_path = "pytorch_model.bin"
|
33 |
-
state_dict = torch.load(ckpt_path)
|
34 |
self.model.load_state_dict(state_dict)
|
35 |
self.model.eval()
|
36 |
|
37 |
def __call__(self, text: str) -> List[float]:
|
38 |
-
# Tokenize
|
39 |
-
inputs = self.tokenizer(
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
with torch.no_grad():
|
41 |
-
emb = self.model(
|
42 |
-
|
|
|
|
|
|
|
|
|
43 |
return emb[0].tolist()
|
44 |
|
45 |
def pipeline(*args, **kwargs):
|
|
|
1 |
from transformers import AutoTokenizer, AutoModel
|
2 |
import torch
|
|
|
3 |
import torch.nn as nn
|
4 |
+
from typing import List
|
5 |
|
6 |
class PersonEmbeddings(nn.Module):
|
7 |
def __init__(self, model_id: str):
|
|
|
14 |
)
|
15 |
|
16 |
def forward(self, input_ids, attention_mask):
|
17 |
+
outputs = self.base_model(input_ids=input_ids, attention_mask=attention_mask)
|
|
|
|
|
|
|
18 |
last_hidden = outputs.last_hidden_state # (B, seq_len, 768)
|
19 |
mean_pooled = last_hidden.mean(dim=1) # (B, 768)
|
20 |
embeddings = self.projection(mean_pooled) # (B, 1536)
|
21 |
return embeddings
|
22 |
|
23 |
class CustomEmbeddingPipeline:
|
24 |
+
"""
|
25 |
+
Loads tokenizer + PersonEmbeddings from the *same* HF repo so that
|
26 |
+
the vocabulary is consistent with the model weights.
|
27 |
+
"""
|
28 |
+
def __init__(self, repo_id="charlieoneill/my_modernbert_person_embeddings"):
|
29 |
+
# 1. Load tokenizer from your own HF repo,
|
30 |
+
# which contains tokenizer.json, special_tokens_map.json, etc.
|
31 |
+
self.tokenizer = AutoTokenizer.from_pretrained(repo_id)
|
32 |
+
|
33 |
+
# 2. Create your PersonEmbeddings using the same repo_id
|
34 |
+
# so AutoModel inside PersonEmbeddings will match
|
35 |
+
self.model = PersonEmbeddings(repo_id)
|
36 |
+
|
37 |
+
# 3. Load your fine-tuned state dict from local file (pytorch_model.bin).
|
38 |
+
# (It's typically named this in your HF repo. Make sure your repo has it!)
|
39 |
ckpt_path = "pytorch_model.bin"
|
40 |
+
state_dict = torch.load(ckpt_path, map_location="cpu")
|
41 |
self.model.load_state_dict(state_dict)
|
42 |
self.model.eval()
|
43 |
|
44 |
def __call__(self, text: str) -> List[float]:
|
45 |
+
# Tokenize input
|
46 |
+
inputs = self.tokenizer(
|
47 |
+
[text],
|
48 |
+
padding=True,
|
49 |
+
truncation=True,
|
50 |
+
return_tensors="pt"
|
51 |
+
)
|
52 |
+
|
53 |
with torch.no_grad():
|
54 |
+
emb = self.model(
|
55 |
+
inputs["input_ids"],
|
56 |
+
inputs["attention_mask"]
|
57 |
+
) # shape: (1, 1536)
|
58 |
+
|
59 |
+
# Return as a Python list
|
60 |
return emb[0].tolist()
|
61 |
|
62 |
def pipeline(*args, **kwargs):
|