End of training
Browse files- README.md +4 -11
- adapter_model.bin +1 -1
README.md
CHANGED
@@ -66,7 +66,7 @@ lora_model_dir: null
|
|
66 |
lora_r: 8
|
67 |
lora_target_linear: true
|
68 |
lr_scheduler: cosine
|
69 |
-
max_steps:
|
70 |
micro_batch_size: 2
|
71 |
mlflow_experiment_name: /tmp/2d001c3aa53c3830_train_data.json
|
72 |
model_type: AutoModelForCausalLM
|
@@ -91,7 +91,7 @@ wandb_name: e7a8e2dd-1c3c-47b1-96ef-f26e57a22615
|
|
91 |
wandb_project: Gradients-On-Demand
|
92 |
wandb_run: your_name
|
93 |
wandb_runid: e7a8e2dd-1c3c-47b1-96ef-f26e57a22615
|
94 |
-
warmup_steps:
|
95 |
weight_decay: 0.0
|
96 |
xformers_attention: null
|
97 |
|
@@ -102,8 +102,6 @@ xformers_attention: null
|
|
102 |
# e7a8e2dd-1c3c-47b1-96ef-f26e57a22615
|
103 |
|
104 |
This model is a fine-tuned version of [unsloth/codegemma-7b-it](https://huggingface.co/unsloth/codegemma-7b-it) on the None dataset.
|
105 |
-
It achieves the following results on the evaluation set:
|
106 |
-
- Loss: 0.1446
|
107 |
|
108 |
## Model description
|
109 |
|
@@ -130,19 +128,14 @@ The following hyperparameters were used during training:
|
|
130 |
- total_train_batch_size: 8
|
131 |
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
132 |
- lr_scheduler_type: cosine
|
133 |
-
- lr_scheduler_warmup_steps:
|
134 |
-
- training_steps:
|
135 |
|
136 |
### Training results
|
137 |
|
138 |
| Training Loss | Epoch | Step | Validation Loss |
|
139 |
|:-------------:|:------:|:----:|:---------------:|
|
140 |
| No log | 0.0007 | 1 | 10.5528 |
|
141 |
-
| 7.7488 | 0.0071 | 10 | 4.3914 |
|
142 |
-
| 0.5001 | 0.0142 | 20 | 0.4179 |
|
143 |
-
| 0.3107 | 0.0212 | 30 | 0.2178 |
|
144 |
-
| 0.1783 | 0.0283 | 40 | 0.1497 |
|
145 |
-
| 0.3288 | 0.0354 | 50 | 0.1446 |
|
146 |
|
147 |
|
148 |
### Framework versions
|
|
|
66 |
lora_r: 8
|
67 |
lora_target_linear: true
|
68 |
lr_scheduler: cosine
|
69 |
+
max_steps: 1
|
70 |
micro_batch_size: 2
|
71 |
mlflow_experiment_name: /tmp/2d001c3aa53c3830_train_data.json
|
72 |
model_type: AutoModelForCausalLM
|
|
|
91 |
wandb_project: Gradients-On-Demand
|
92 |
wandb_run: your_name
|
93 |
wandb_runid: e7a8e2dd-1c3c-47b1-96ef-f26e57a22615
|
94 |
+
warmup_steps: 1
|
95 |
weight_decay: 0.0
|
96 |
xformers_attention: null
|
97 |
|
|
|
102 |
# e7a8e2dd-1c3c-47b1-96ef-f26e57a22615
|
103 |
|
104 |
This model is a fine-tuned version of [unsloth/codegemma-7b-it](https://huggingface.co/unsloth/codegemma-7b-it) on the None dataset.
|
|
|
|
|
105 |
|
106 |
## Model description
|
107 |
|
|
|
128 |
- total_train_batch_size: 8
|
129 |
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
130 |
- lr_scheduler_type: cosine
|
131 |
+
- lr_scheduler_warmup_steps: 2
|
132 |
+
- training_steps: 1
|
133 |
|
134 |
### Training results
|
135 |
|
136 |
| Training Loss | Epoch | Step | Validation Loss |
|
137 |
|:-------------:|:------:|:----:|:---------------:|
|
138 |
| No log | 0.0007 | 1 | 10.5528 |
|
|
|
|
|
|
|
|
|
|
|
139 |
|
140 |
|
141 |
### Framework versions
|
adapter_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 100149034
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:538bac8e466f80a84e3f91c85a6650c958b72c440d2306382e7c1af96d670e21
|
3 |
size 100149034
|