chavinlo commited on
Commit
ca5688d
1 Parent(s): 314693a

Training in progress, step 500

Browse files
added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "[PAD]": 32000
3
+ }
checkpoint-500/added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "[PAD]": 32000
3
+ }
checkpoint-500/config.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "decapoda-research/llama-7b-hf",
3
+ "architectures": [
4
+ "LLaMAForCausalLM"
5
+ ],
6
+ "bos_token_id": 0,
7
+ "eos_token_id": 1,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 4096,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 11008,
12
+ "max_sequence_length": 2048,
13
+ "model_type": "llama",
14
+ "num_attention_heads": 32,
15
+ "num_hidden_layers": 32,
16
+ "pad_token_id": -1,
17
+ "rms_norm_eps": 1e-06,
18
+ "tie_word_embeddings": false,
19
+ "torch_dtype": "float32",
20
+ "transformers_version": "4.27.0.dev0",
21
+ "use_cache": true,
22
+ "vocab_size": 32001
23
+ }
checkpoint-500/generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 0,
4
+ "eos_token_id": 1,
5
+ "pad_token_id": 0,
6
+ "transformers_version": "4.27.0.dev0"
7
+ }
checkpoint-500/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2523108b68eebcb4bd6aee3eac0da01da4e12659b2ef0e6905a8fa1201a654f2
3
+ size 13476876030
checkpoint-500/pytorch_model-00001-of-00003.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:212b8ae977e9a2ce54cfa859ad06a565be4dd09f1b18f19882186bf85fb1b5b8
3
+ size 9878006034
checkpoint-500/pytorch_model-00002-of-00003.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:425f5339e90b5292669df59af4080d3298fedbcaac5eb890d48add653656846e
3
+ size 9894801206
checkpoint-500/pytorch_model-00003-of-00003.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c82fdd32d48d2fe40a5644ab93c53be9b0941cb398618b4bf34c3f92c06f4d21
3
+ size 7181007225
checkpoint-500/pytorch_model.bin.index.json ADDED
@@ -0,0 +1,330 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 26953699328
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "pytorch_model-00003-of-00003.bin",
7
+ "model.embed_tokens.weight": "pytorch_model-00001-of-00003.bin",
8
+ "model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
9
+ "model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
10
+ "model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
11
+ "model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
12
+ "model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
13
+ "model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
14
+ "model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
15
+ "model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
16
+ "model.layers.0.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
17
+ "model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
18
+ "model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
19
+ "model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
20
+ "model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
21
+ "model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
22
+ "model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
23
+ "model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
24
+ "model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
25
+ "model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
26
+ "model.layers.1.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
27
+ "model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
28
+ "model.layers.10.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
29
+ "model.layers.10.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
30
+ "model.layers.10.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
31
+ "model.layers.10.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
32
+ "model.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
33
+ "model.layers.10.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
34
+ "model.layers.10.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
35
+ "model.layers.10.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
36
+ "model.layers.10.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
37
+ "model.layers.10.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
38
+ "model.layers.11.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
39
+ "model.layers.11.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
40
+ "model.layers.11.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
41
+ "model.layers.11.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
42
+ "model.layers.11.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
43
+ "model.layers.11.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
44
+ "model.layers.11.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
45
+ "model.layers.11.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
46
+ "model.layers.11.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
47
+ "model.layers.11.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
48
+ "model.layers.12.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
49
+ "model.layers.12.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
50
+ "model.layers.12.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
51
+ "model.layers.12.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
52
+ "model.layers.12.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
53
+ "model.layers.12.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
54
+ "model.layers.12.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
55
+ "model.layers.12.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
56
+ "model.layers.12.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
57
+ "model.layers.12.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
58
+ "model.layers.13.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
59
+ "model.layers.13.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
60
+ "model.layers.13.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
61
+ "model.layers.13.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
62
+ "model.layers.13.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
63
+ "model.layers.13.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
64
+ "model.layers.13.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
65
+ "model.layers.13.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
66
+ "model.layers.13.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
67
+ "model.layers.13.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
68
+ "model.layers.14.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
69
+ "model.layers.14.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
70
+ "model.layers.14.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
71
+ "model.layers.14.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
72
+ "model.layers.14.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
73
+ "model.layers.14.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
74
+ "model.layers.14.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
75
+ "model.layers.14.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
76
+ "model.layers.14.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
77
+ "model.layers.14.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
78
+ "model.layers.15.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
79
+ "model.layers.15.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
80
+ "model.layers.15.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
81
+ "model.layers.15.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
82
+ "model.layers.15.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
83
+ "model.layers.15.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
84
+ "model.layers.15.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
85
+ "model.layers.15.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
86
+ "model.layers.15.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
87
+ "model.layers.15.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
88
+ "model.layers.16.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
89
+ "model.layers.16.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
90
+ "model.layers.16.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
91
+ "model.layers.16.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
92
+ "model.layers.16.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
93
+ "model.layers.16.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
94
+ "model.layers.16.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
95
+ "model.layers.16.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
96
+ "model.layers.16.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
97
+ "model.layers.16.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
98
+ "model.layers.17.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
99
+ "model.layers.17.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
100
+ "model.layers.17.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
101
+ "model.layers.17.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
102
+ "model.layers.17.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
103
+ "model.layers.17.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
104
+ "model.layers.17.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
105
+ "model.layers.17.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
106
+ "model.layers.17.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
107
+ "model.layers.17.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
108
+ "model.layers.18.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
109
+ "model.layers.18.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
110
+ "model.layers.18.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
111
+ "model.layers.18.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
112
+ "model.layers.18.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
113
+ "model.layers.18.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
114
+ "model.layers.18.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
115
+ "model.layers.18.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
116
+ "model.layers.18.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
117
+ "model.layers.18.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
118
+ "model.layers.19.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
119
+ "model.layers.19.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
120
+ "model.layers.19.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
121
+ "model.layers.19.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
122
+ "model.layers.19.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
123
+ "model.layers.19.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
124
+ "model.layers.19.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
125
+ "model.layers.19.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
126
+ "model.layers.19.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
127
+ "model.layers.19.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
128
+ "model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
129
+ "model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
130
+ "model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
131
+ "model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
132
+ "model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
133
+ "model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
134
+ "model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
135
+ "model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
136
+ "model.layers.2.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
137
+ "model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
138
+ "model.layers.20.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
139
+ "model.layers.20.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
140
+ "model.layers.20.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
141
+ "model.layers.20.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
142
+ "model.layers.20.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
143
+ "model.layers.20.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
144
+ "model.layers.20.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
145
+ "model.layers.20.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
146
+ "model.layers.20.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
147
+ "model.layers.20.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
148
+ "model.layers.21.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
149
+ "model.layers.21.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
150
+ "model.layers.21.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
151
+ "model.layers.21.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
152
+ "model.layers.21.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
153
+ "model.layers.21.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
154
+ "model.layers.21.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
155
+ "model.layers.21.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
156
+ "model.layers.21.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
157
+ "model.layers.21.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
158
+ "model.layers.22.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
159
+ "model.layers.22.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
160
+ "model.layers.22.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
161
+ "model.layers.22.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
162
+ "model.layers.22.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
163
+ "model.layers.22.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
164
+ "model.layers.22.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
165
+ "model.layers.22.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
166
+ "model.layers.22.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
167
+ "model.layers.22.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
168
+ "model.layers.23.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
169
+ "model.layers.23.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
170
+ "model.layers.23.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
171
+ "model.layers.23.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
172
+ "model.layers.23.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
173
+ "model.layers.23.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
174
+ "model.layers.23.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
175
+ "model.layers.23.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
176
+ "model.layers.23.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
177
+ "model.layers.23.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
178
+ "model.layers.24.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
179
+ "model.layers.24.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
180
+ "model.layers.24.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
181
+ "model.layers.24.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
182
+ "model.layers.24.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
183
+ "model.layers.24.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
184
+ "model.layers.24.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
185
+ "model.layers.24.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
186
+ "model.layers.24.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
187
+ "model.layers.24.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
188
+ "model.layers.25.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
189
+ "model.layers.25.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
190
+ "model.layers.25.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
191
+ "model.layers.25.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
192
+ "model.layers.25.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
193
+ "model.layers.25.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
194
+ "model.layers.25.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
195
+ "model.layers.25.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
196
+ "model.layers.25.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
197
+ "model.layers.25.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
198
+ "model.layers.26.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
199
+ "model.layers.26.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
200
+ "model.layers.26.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
201
+ "model.layers.26.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
202
+ "model.layers.26.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
203
+ "model.layers.26.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
204
+ "model.layers.26.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
205
+ "model.layers.26.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
206
+ "model.layers.26.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
207
+ "model.layers.26.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
208
+ "model.layers.27.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
209
+ "model.layers.27.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
210
+ "model.layers.27.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
211
+ "model.layers.27.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
212
+ "model.layers.27.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
213
+ "model.layers.27.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
214
+ "model.layers.27.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
215
+ "model.layers.27.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
216
+ "model.layers.27.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
217
+ "model.layers.27.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
218
+ "model.layers.28.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
219
+ "model.layers.28.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
220
+ "model.layers.28.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
221
+ "model.layers.28.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
222
+ "model.layers.28.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
223
+ "model.layers.28.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
224
+ "model.layers.28.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
225
+ "model.layers.28.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
226
+ "model.layers.28.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
227
+ "model.layers.28.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
228
+ "model.layers.29.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
229
+ "model.layers.29.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
230
+ "model.layers.29.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
231
+ "model.layers.29.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
232
+ "model.layers.29.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
233
+ "model.layers.29.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
234
+ "model.layers.29.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
235
+ "model.layers.29.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
236
+ "model.layers.29.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
237
+ "model.layers.29.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
238
+ "model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
239
+ "model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
240
+ "model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
241
+ "model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
242
+ "model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
243
+ "model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
244
+ "model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
245
+ "model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
246
+ "model.layers.3.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
247
+ "model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
248
+ "model.layers.30.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
249
+ "model.layers.30.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
250
+ "model.layers.30.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
251
+ "model.layers.30.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
252
+ "model.layers.30.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
253
+ "model.layers.30.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
254
+ "model.layers.30.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
255
+ "model.layers.30.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
256
+ "model.layers.30.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
257
+ "model.layers.30.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
258
+ "model.layers.31.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
259
+ "model.layers.31.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
260
+ "model.layers.31.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
261
+ "model.layers.31.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
262
+ "model.layers.31.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
263
+ "model.layers.31.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
264
+ "model.layers.31.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
265
+ "model.layers.31.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
266
+ "model.layers.31.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
267
+ "model.layers.31.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
268
+ "model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
269
+ "model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
270
+ "model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
271
+ "model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
272
+ "model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
273
+ "model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
274
+ "model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
275
+ "model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
276
+ "model.layers.4.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
277
+ "model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
278
+ "model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
279
+ "model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
280
+ "model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
281
+ "model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
282
+ "model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
283
+ "model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
284
+ "model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
285
+ "model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
286
+ "model.layers.5.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
287
+ "model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
288
+ "model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
289
+ "model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
290
+ "model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
291
+ "model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
292
+ "model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
293
+ "model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
294
+ "model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
295
+ "model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
296
+ "model.layers.6.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
297
+ "model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
298
+ "model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
299
+ "model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
300
+ "model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
301
+ "model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
302
+ "model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
303
+ "model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
304
+ "model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
305
+ "model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
306
+ "model.layers.7.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
307
+ "model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
308
+ "model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
309
+ "model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
310
+ "model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
311
+ "model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
312
+ "model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
313
+ "model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
314
+ "model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
315
+ "model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
316
+ "model.layers.8.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
317
+ "model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
318
+ "model.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
319
+ "model.layers.9.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
320
+ "model.layers.9.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
321
+ "model.layers.9.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
322
+ "model.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
323
+ "model.layers.9.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
324
+ "model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
325
+ "model.layers.9.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
326
+ "model.layers.9.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
327
+ "model.layers.9.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
328
+ "model.norm.weight": "pytorch_model-00003-of-00003.bin"
329
+ }
330
+ }
checkpoint-500/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e75c96f06b249e57a701db73ce821398e69672027a86d3a44063830602a29ab4
3
+ size 14583
checkpoint-500/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6dae7f45b6bac644ac207a61f43cba6d4b919a4cac22022bbb02907914422f5d
3
+ size 14583
checkpoint-500/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e53c770fe48635faad7fa341007d771781f1397cd47daab5b58f879ffb65f178
3
+ size 14583
checkpoint-500/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:68692af1001e65d02e07ac9974ccf4c332cfb23bc8f89566e1a908b1f2c4a1ed
3
+ size 14583
checkpoint-500/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5167f88af64ce34a6729ed6f08c193f36406df493c8a4619b5e8d4e9c94c890d
3
+ size 627
checkpoint-500/special_tokens_map.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "</s>",
3
+ "eos_token": "</s>",
4
+ "pad_token": "[PAD]",
5
+ "unk_token": "</s>"
6
+ }
checkpoint-500/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
checkpoint-500/tokenizer_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "",
3
+ "eos_token": "",
4
+ "model_max_length": 1024,
5
+ "padding_side": "right",
6
+ "special_tokens_map_file": "/home/ubuntu/.cache/huggingface/hub/models--decapoda-research--llama-7b-hf/snapshots/5f98eefcc80e437ef68d457ad7bf167c2c6a1348/special_tokens_map.json",
7
+ "tokenizer_class": "LLaMATokenizer",
8
+ "unk_token": ""
9
+ }
checkpoint-500/trainer_state.json ADDED
@@ -0,0 +1,3016 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.32674399607907206,
5
+ "global_step": 500,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 0.0,
12
+ "learning_rate": 1.4492753623188408e-07,
13
+ "loss": 2.5958,
14
+ "step": 1
15
+ },
16
+ {
17
+ "epoch": 0.0,
18
+ "learning_rate": 2.8985507246376816e-07,
19
+ "loss": 2.4792,
20
+ "step": 2
21
+ },
22
+ {
23
+ "epoch": 0.0,
24
+ "learning_rate": 4.347826086956522e-07,
25
+ "loss": 1.9376,
26
+ "step": 3
27
+ },
28
+ {
29
+ "epoch": 0.0,
30
+ "learning_rate": 5.797101449275363e-07,
31
+ "loss": 2.0731,
32
+ "step": 4
33
+ },
34
+ {
35
+ "epoch": 0.0,
36
+ "learning_rate": 7.246376811594204e-07,
37
+ "loss": 1.7538,
38
+ "step": 5
39
+ },
40
+ {
41
+ "epoch": 0.0,
42
+ "learning_rate": 8.695652173913044e-07,
43
+ "loss": 1.8296,
44
+ "step": 6
45
+ },
46
+ {
47
+ "epoch": 0.0,
48
+ "learning_rate": 1.0144927536231885e-06,
49
+ "loss": 1.9283,
50
+ "step": 7
51
+ },
52
+ {
53
+ "epoch": 0.01,
54
+ "learning_rate": 1.1594202898550726e-06,
55
+ "loss": 1.8517,
56
+ "step": 8
57
+ },
58
+ {
59
+ "epoch": 0.01,
60
+ "learning_rate": 1.3043478260869566e-06,
61
+ "loss": 1.7672,
62
+ "step": 9
63
+ },
64
+ {
65
+ "epoch": 0.01,
66
+ "learning_rate": 1.4492753623188408e-06,
67
+ "loss": 1.7437,
68
+ "step": 10
69
+ },
70
+ {
71
+ "epoch": 0.01,
72
+ "learning_rate": 1.5942028985507246e-06,
73
+ "loss": 1.7038,
74
+ "step": 11
75
+ },
76
+ {
77
+ "epoch": 0.01,
78
+ "learning_rate": 1.7391304347826088e-06,
79
+ "loss": 2.0155,
80
+ "step": 12
81
+ },
82
+ {
83
+ "epoch": 0.01,
84
+ "learning_rate": 1.884057971014493e-06,
85
+ "loss": 2.0078,
86
+ "step": 13
87
+ },
88
+ {
89
+ "epoch": 0.01,
90
+ "learning_rate": 2.028985507246377e-06,
91
+ "loss": 1.9901,
92
+ "step": 14
93
+ },
94
+ {
95
+ "epoch": 0.01,
96
+ "learning_rate": 2.173913043478261e-06,
97
+ "loss": 1.7954,
98
+ "step": 15
99
+ },
100
+ {
101
+ "epoch": 0.01,
102
+ "learning_rate": 2.3188405797101453e-06,
103
+ "loss": 1.7183,
104
+ "step": 16
105
+ },
106
+ {
107
+ "epoch": 0.01,
108
+ "learning_rate": 2.4637681159420295e-06,
109
+ "loss": 1.842,
110
+ "step": 17
111
+ },
112
+ {
113
+ "epoch": 0.01,
114
+ "learning_rate": 2.6086956521739132e-06,
115
+ "loss": 1.7957,
116
+ "step": 18
117
+ },
118
+ {
119
+ "epoch": 0.01,
120
+ "learning_rate": 2.7536231884057974e-06,
121
+ "loss": 1.7775,
122
+ "step": 19
123
+ },
124
+ {
125
+ "epoch": 0.01,
126
+ "learning_rate": 2.8985507246376816e-06,
127
+ "loss": 1.8612,
128
+ "step": 20
129
+ },
130
+ {
131
+ "epoch": 0.01,
132
+ "learning_rate": 3.043478260869566e-06,
133
+ "loss": 1.68,
134
+ "step": 21
135
+ },
136
+ {
137
+ "epoch": 0.01,
138
+ "learning_rate": 3.188405797101449e-06,
139
+ "loss": 1.928,
140
+ "step": 22
141
+ },
142
+ {
143
+ "epoch": 0.02,
144
+ "learning_rate": 3.3333333333333333e-06,
145
+ "loss": 1.7262,
146
+ "step": 23
147
+ },
148
+ {
149
+ "epoch": 0.02,
150
+ "learning_rate": 3.4782608695652175e-06,
151
+ "loss": 1.9312,
152
+ "step": 24
153
+ },
154
+ {
155
+ "epoch": 0.02,
156
+ "learning_rate": 3.6231884057971017e-06,
157
+ "loss": 1.9374,
158
+ "step": 25
159
+ },
160
+ {
161
+ "epoch": 0.02,
162
+ "learning_rate": 3.768115942028986e-06,
163
+ "loss": 1.5449,
164
+ "step": 26
165
+ },
166
+ {
167
+ "epoch": 0.02,
168
+ "learning_rate": 3.91304347826087e-06,
169
+ "loss": 1.7894,
170
+ "step": 27
171
+ },
172
+ {
173
+ "epoch": 0.02,
174
+ "learning_rate": 4.057971014492754e-06,
175
+ "loss": 2.0061,
176
+ "step": 28
177
+ },
178
+ {
179
+ "epoch": 0.02,
180
+ "learning_rate": 4.202898550724638e-06,
181
+ "loss": 1.775,
182
+ "step": 29
183
+ },
184
+ {
185
+ "epoch": 0.02,
186
+ "learning_rate": 4.347826086956522e-06,
187
+ "loss": 1.856,
188
+ "step": 30
189
+ },
190
+ {
191
+ "epoch": 0.02,
192
+ "learning_rate": 4.492753623188406e-06,
193
+ "loss": 1.7222,
194
+ "step": 31
195
+ },
196
+ {
197
+ "epoch": 0.02,
198
+ "learning_rate": 4.637681159420291e-06,
199
+ "loss": 2.0042,
200
+ "step": 32
201
+ },
202
+ {
203
+ "epoch": 0.02,
204
+ "learning_rate": 4.782608695652174e-06,
205
+ "loss": 1.7216,
206
+ "step": 33
207
+ },
208
+ {
209
+ "epoch": 0.02,
210
+ "learning_rate": 4.927536231884059e-06,
211
+ "loss": 1.6443,
212
+ "step": 34
213
+ },
214
+ {
215
+ "epoch": 0.02,
216
+ "learning_rate": 5.072463768115943e-06,
217
+ "loss": 1.6971,
218
+ "step": 35
219
+ },
220
+ {
221
+ "epoch": 0.02,
222
+ "learning_rate": 5.2173913043478265e-06,
223
+ "loss": 1.7971,
224
+ "step": 36
225
+ },
226
+ {
227
+ "epoch": 0.02,
228
+ "learning_rate": 5.362318840579711e-06,
229
+ "loss": 1.771,
230
+ "step": 37
231
+ },
232
+ {
233
+ "epoch": 0.02,
234
+ "learning_rate": 5.507246376811595e-06,
235
+ "loss": 1.7365,
236
+ "step": 38
237
+ },
238
+ {
239
+ "epoch": 0.03,
240
+ "learning_rate": 5.652173913043479e-06,
241
+ "loss": 1.9443,
242
+ "step": 39
243
+ },
244
+ {
245
+ "epoch": 0.03,
246
+ "learning_rate": 5.797101449275363e-06,
247
+ "loss": 1.8931,
248
+ "step": 40
249
+ },
250
+ {
251
+ "epoch": 0.03,
252
+ "learning_rate": 5.942028985507247e-06,
253
+ "loss": 1.7748,
254
+ "step": 41
255
+ },
256
+ {
257
+ "epoch": 0.03,
258
+ "learning_rate": 6.086956521739132e-06,
259
+ "loss": 1.8616,
260
+ "step": 42
261
+ },
262
+ {
263
+ "epoch": 0.03,
264
+ "learning_rate": 6.2318840579710145e-06,
265
+ "loss": 1.8224,
266
+ "step": 43
267
+ },
268
+ {
269
+ "epoch": 0.03,
270
+ "learning_rate": 6.376811594202898e-06,
271
+ "loss": 1.5656,
272
+ "step": 44
273
+ },
274
+ {
275
+ "epoch": 0.03,
276
+ "learning_rate": 6.521739130434783e-06,
277
+ "loss": 1.6967,
278
+ "step": 45
279
+ },
280
+ {
281
+ "epoch": 0.03,
282
+ "learning_rate": 6.666666666666667e-06,
283
+ "loss": 1.7999,
284
+ "step": 46
285
+ },
286
+ {
287
+ "epoch": 0.03,
288
+ "learning_rate": 6.811594202898551e-06,
289
+ "loss": 1.7706,
290
+ "step": 47
291
+ },
292
+ {
293
+ "epoch": 0.03,
294
+ "learning_rate": 6.956521739130435e-06,
295
+ "loss": 1.732,
296
+ "step": 48
297
+ },
298
+ {
299
+ "epoch": 0.03,
300
+ "learning_rate": 7.10144927536232e-06,
301
+ "loss": 1.9167,
302
+ "step": 49
303
+ },
304
+ {
305
+ "epoch": 0.03,
306
+ "learning_rate": 7.246376811594203e-06,
307
+ "loss": 1.7641,
308
+ "step": 50
309
+ },
310
+ {
311
+ "epoch": 0.03,
312
+ "learning_rate": 7.391304347826087e-06,
313
+ "loss": 1.5833,
314
+ "step": 51
315
+ },
316
+ {
317
+ "epoch": 0.03,
318
+ "learning_rate": 7.536231884057972e-06,
319
+ "loss": 1.7085,
320
+ "step": 52
321
+ },
322
+ {
323
+ "epoch": 0.03,
324
+ "learning_rate": 7.681159420289856e-06,
325
+ "loss": 1.7761,
326
+ "step": 53
327
+ },
328
+ {
329
+ "epoch": 0.04,
330
+ "learning_rate": 7.82608695652174e-06,
331
+ "loss": 1.7624,
332
+ "step": 54
333
+ },
334
+ {
335
+ "epoch": 0.04,
336
+ "learning_rate": 7.971014492753623e-06,
337
+ "loss": 1.7813,
338
+ "step": 55
339
+ },
340
+ {
341
+ "epoch": 0.04,
342
+ "learning_rate": 8.115942028985508e-06,
343
+ "loss": 1.6884,
344
+ "step": 56
345
+ },
346
+ {
347
+ "epoch": 0.04,
348
+ "learning_rate": 8.260869565217392e-06,
349
+ "loss": 1.7478,
350
+ "step": 57
351
+ },
352
+ {
353
+ "epoch": 0.04,
354
+ "learning_rate": 8.405797101449275e-06,
355
+ "loss": 1.6749,
356
+ "step": 58
357
+ },
358
+ {
359
+ "epoch": 0.04,
360
+ "learning_rate": 8.55072463768116e-06,
361
+ "loss": 1.5301,
362
+ "step": 59
363
+ },
364
+ {
365
+ "epoch": 0.04,
366
+ "learning_rate": 8.695652173913044e-06,
367
+ "loss": 1.6166,
368
+ "step": 60
369
+ },
370
+ {
371
+ "epoch": 0.04,
372
+ "learning_rate": 8.840579710144929e-06,
373
+ "loss": 1.5818,
374
+ "step": 61
375
+ },
376
+ {
377
+ "epoch": 0.04,
378
+ "learning_rate": 8.985507246376812e-06,
379
+ "loss": 1.7006,
380
+ "step": 62
381
+ },
382
+ {
383
+ "epoch": 0.04,
384
+ "learning_rate": 9.130434782608697e-06,
385
+ "loss": 1.7545,
386
+ "step": 63
387
+ },
388
+ {
389
+ "epoch": 0.04,
390
+ "learning_rate": 9.275362318840581e-06,
391
+ "loss": 1.7942,
392
+ "step": 64
393
+ },
394
+ {
395
+ "epoch": 0.04,
396
+ "learning_rate": 9.420289855072464e-06,
397
+ "loss": 1.8001,
398
+ "step": 65
399
+ },
400
+ {
401
+ "epoch": 0.04,
402
+ "learning_rate": 9.565217391304349e-06,
403
+ "loss": 1.8964,
404
+ "step": 66
405
+ },
406
+ {
407
+ "epoch": 0.04,
408
+ "learning_rate": 9.710144927536233e-06,
409
+ "loss": 1.8787,
410
+ "step": 67
411
+ },
412
+ {
413
+ "epoch": 0.04,
414
+ "learning_rate": 9.855072463768118e-06,
415
+ "loss": 1.6214,
416
+ "step": 68
417
+ },
418
+ {
419
+ "epoch": 0.05,
420
+ "learning_rate": 1e-05,
421
+ "loss": 1.7235,
422
+ "step": 69
423
+ },
424
+ {
425
+ "epoch": 0.05,
426
+ "learning_rate": 1.0144927536231885e-05,
427
+ "loss": 1.6727,
428
+ "step": 70
429
+ },
430
+ {
431
+ "epoch": 0.05,
432
+ "learning_rate": 1.0289855072463768e-05,
433
+ "loss": 1.5962,
434
+ "step": 71
435
+ },
436
+ {
437
+ "epoch": 0.05,
438
+ "learning_rate": 1.0434782608695653e-05,
439
+ "loss": 1.5443,
440
+ "step": 72
441
+ },
442
+ {
443
+ "epoch": 0.05,
444
+ "learning_rate": 1.0579710144927538e-05,
445
+ "loss": 1.8079,
446
+ "step": 73
447
+ },
448
+ {
449
+ "epoch": 0.05,
450
+ "learning_rate": 1.0724637681159422e-05,
451
+ "loss": 1.7635,
452
+ "step": 74
453
+ },
454
+ {
455
+ "epoch": 0.05,
456
+ "learning_rate": 1.0869565217391305e-05,
457
+ "loss": 1.6006,
458
+ "step": 75
459
+ },
460
+ {
461
+ "epoch": 0.05,
462
+ "learning_rate": 1.101449275362319e-05,
463
+ "loss": 1.8047,
464
+ "step": 76
465
+ },
466
+ {
467
+ "epoch": 0.05,
468
+ "learning_rate": 1.1159420289855074e-05,
469
+ "loss": 1.7687,
470
+ "step": 77
471
+ },
472
+ {
473
+ "epoch": 0.05,
474
+ "learning_rate": 1.1304347826086957e-05,
475
+ "loss": 1.6998,
476
+ "step": 78
477
+ },
478
+ {
479
+ "epoch": 0.05,
480
+ "learning_rate": 1.1449275362318842e-05,
481
+ "loss": 1.717,
482
+ "step": 79
483
+ },
484
+ {
485
+ "epoch": 0.05,
486
+ "learning_rate": 1.1594202898550726e-05,
487
+ "loss": 1.6178,
488
+ "step": 80
489
+ },
490
+ {
491
+ "epoch": 0.05,
492
+ "learning_rate": 1.1739130434782611e-05,
493
+ "loss": 1.9585,
494
+ "step": 81
495
+ },
496
+ {
497
+ "epoch": 0.05,
498
+ "learning_rate": 1.1884057971014494e-05,
499
+ "loss": 1.6892,
500
+ "step": 82
501
+ },
502
+ {
503
+ "epoch": 0.05,
504
+ "learning_rate": 1.2028985507246379e-05,
505
+ "loss": 1.6169,
506
+ "step": 83
507
+ },
508
+ {
509
+ "epoch": 0.05,
510
+ "learning_rate": 1.2173913043478263e-05,
511
+ "loss": 2.0966,
512
+ "step": 84
513
+ },
514
+ {
515
+ "epoch": 0.06,
516
+ "learning_rate": 1.2318840579710144e-05,
517
+ "loss": 2.0971,
518
+ "step": 85
519
+ },
520
+ {
521
+ "epoch": 0.06,
522
+ "learning_rate": 1.2463768115942029e-05,
523
+ "loss": 1.6939,
524
+ "step": 86
525
+ },
526
+ {
527
+ "epoch": 0.06,
528
+ "learning_rate": 1.2608695652173915e-05,
529
+ "loss": 1.7684,
530
+ "step": 87
531
+ },
532
+ {
533
+ "epoch": 0.06,
534
+ "learning_rate": 1.2753623188405797e-05,
535
+ "loss": 1.5717,
536
+ "step": 88
537
+ },
538
+ {
539
+ "epoch": 0.06,
540
+ "learning_rate": 1.2898550724637681e-05,
541
+ "loss": 1.7117,
542
+ "step": 89
543
+ },
544
+ {
545
+ "epoch": 0.06,
546
+ "learning_rate": 1.3043478260869566e-05,
547
+ "loss": 1.9092,
548
+ "step": 90
549
+ },
550
+ {
551
+ "epoch": 0.06,
552
+ "learning_rate": 1.318840579710145e-05,
553
+ "loss": 1.9193,
554
+ "step": 91
555
+ },
556
+ {
557
+ "epoch": 0.06,
558
+ "learning_rate": 1.3333333333333333e-05,
559
+ "loss": 1.8541,
560
+ "step": 92
561
+ },
562
+ {
563
+ "epoch": 0.06,
564
+ "learning_rate": 1.3478260869565218e-05,
565
+ "loss": 2.1758,
566
+ "step": 93
567
+ },
568
+ {
569
+ "epoch": 0.06,
570
+ "learning_rate": 1.3623188405797103e-05,
571
+ "loss": 1.897,
572
+ "step": 94
573
+ },
574
+ {
575
+ "epoch": 0.06,
576
+ "learning_rate": 1.3768115942028985e-05,
577
+ "loss": 1.6832,
578
+ "step": 95
579
+ },
580
+ {
581
+ "epoch": 0.06,
582
+ "learning_rate": 1.391304347826087e-05,
583
+ "loss": 1.7025,
584
+ "step": 96
585
+ },
586
+ {
587
+ "epoch": 0.06,
588
+ "learning_rate": 1.4057971014492755e-05,
589
+ "loss": 1.6876,
590
+ "step": 97
591
+ },
592
+ {
593
+ "epoch": 0.06,
594
+ "learning_rate": 1.420289855072464e-05,
595
+ "loss": 1.7254,
596
+ "step": 98
597
+ },
598
+ {
599
+ "epoch": 0.06,
600
+ "learning_rate": 1.4347826086956522e-05,
601
+ "loss": 1.7035,
602
+ "step": 99
603
+ },
604
+ {
605
+ "epoch": 0.07,
606
+ "learning_rate": 1.4492753623188407e-05,
607
+ "loss": 1.6701,
608
+ "step": 100
609
+ },
610
+ {
611
+ "epoch": 0.07,
612
+ "learning_rate": 1.4637681159420291e-05,
613
+ "loss": 1.755,
614
+ "step": 101
615
+ },
616
+ {
617
+ "epoch": 0.07,
618
+ "learning_rate": 1.4782608695652174e-05,
619
+ "loss": 1.8233,
620
+ "step": 102
621
+ },
622
+ {
623
+ "epoch": 0.07,
624
+ "learning_rate": 1.4927536231884059e-05,
625
+ "loss": 1.5721,
626
+ "step": 103
627
+ },
628
+ {
629
+ "epoch": 0.07,
630
+ "learning_rate": 1.5072463768115944e-05,
631
+ "loss": 1.92,
632
+ "step": 104
633
+ },
634
+ {
635
+ "epoch": 0.07,
636
+ "learning_rate": 1.5217391304347828e-05,
637
+ "loss": 1.7907,
638
+ "step": 105
639
+ },
640
+ {
641
+ "epoch": 0.07,
642
+ "learning_rate": 1.536231884057971e-05,
643
+ "loss": 1.7155,
644
+ "step": 106
645
+ },
646
+ {
647
+ "epoch": 0.07,
648
+ "learning_rate": 1.5507246376811594e-05,
649
+ "loss": 1.5529,
650
+ "step": 107
651
+ },
652
+ {
653
+ "epoch": 0.07,
654
+ "learning_rate": 1.565217391304348e-05,
655
+ "loss": 1.6133,
656
+ "step": 108
657
+ },
658
+ {
659
+ "epoch": 0.07,
660
+ "learning_rate": 1.5797101449275363e-05,
661
+ "loss": 1.6704,
662
+ "step": 109
663
+ },
664
+ {
665
+ "epoch": 0.07,
666
+ "learning_rate": 1.5942028985507246e-05,
667
+ "loss": 1.5658,
668
+ "step": 110
669
+ },
670
+ {
671
+ "epoch": 0.07,
672
+ "learning_rate": 1.6086956521739132e-05,
673
+ "loss": 1.638,
674
+ "step": 111
675
+ },
676
+ {
677
+ "epoch": 0.07,
678
+ "learning_rate": 1.6231884057971015e-05,
679
+ "loss": 1.9667,
680
+ "step": 112
681
+ },
682
+ {
683
+ "epoch": 0.07,
684
+ "learning_rate": 1.6376811594202898e-05,
685
+ "loss": 1.5857,
686
+ "step": 113
687
+ },
688
+ {
689
+ "epoch": 0.07,
690
+ "learning_rate": 1.6521739130434785e-05,
691
+ "loss": 1.8468,
692
+ "step": 114
693
+ },
694
+ {
695
+ "epoch": 0.08,
696
+ "learning_rate": 1.6666666666666667e-05,
697
+ "loss": 1.8011,
698
+ "step": 115
699
+ },
700
+ {
701
+ "epoch": 0.08,
702
+ "learning_rate": 1.681159420289855e-05,
703
+ "loss": 1.5584,
704
+ "step": 116
705
+ },
706
+ {
707
+ "epoch": 0.08,
708
+ "learning_rate": 1.6956521739130437e-05,
709
+ "loss": 1.5325,
710
+ "step": 117
711
+ },
712
+ {
713
+ "epoch": 0.08,
714
+ "learning_rate": 1.710144927536232e-05,
715
+ "loss": 1.6412,
716
+ "step": 118
717
+ },
718
+ {
719
+ "epoch": 0.08,
720
+ "learning_rate": 1.7246376811594206e-05,
721
+ "loss": 1.7962,
722
+ "step": 119
723
+ },
724
+ {
725
+ "epoch": 0.08,
726
+ "learning_rate": 1.739130434782609e-05,
727
+ "loss": 1.771,
728
+ "step": 120
729
+ },
730
+ {
731
+ "epoch": 0.08,
732
+ "learning_rate": 1.7536231884057972e-05,
733
+ "loss": 1.619,
734
+ "step": 121
735
+ },
736
+ {
737
+ "epoch": 0.08,
738
+ "learning_rate": 1.7681159420289858e-05,
739
+ "loss": 1.7047,
740
+ "step": 122
741
+ },
742
+ {
743
+ "epoch": 0.08,
744
+ "learning_rate": 1.782608695652174e-05,
745
+ "loss": 1.7217,
746
+ "step": 123
747
+ },
748
+ {
749
+ "epoch": 0.08,
750
+ "learning_rate": 1.7971014492753624e-05,
751
+ "loss": 1.819,
752
+ "step": 124
753
+ },
754
+ {
755
+ "epoch": 0.08,
756
+ "learning_rate": 1.811594202898551e-05,
757
+ "loss": 1.5605,
758
+ "step": 125
759
+ },
760
+ {
761
+ "epoch": 0.08,
762
+ "learning_rate": 1.8260869565217393e-05,
763
+ "loss": 1.7051,
764
+ "step": 126
765
+ },
766
+ {
767
+ "epoch": 0.08,
768
+ "learning_rate": 1.8405797101449276e-05,
769
+ "loss": 1.6241,
770
+ "step": 127
771
+ },
772
+ {
773
+ "epoch": 0.08,
774
+ "learning_rate": 1.8550724637681162e-05,
775
+ "loss": 1.7919,
776
+ "step": 128
777
+ },
778
+ {
779
+ "epoch": 0.08,
780
+ "learning_rate": 1.8695652173913045e-05,
781
+ "loss": 1.971,
782
+ "step": 129
783
+ },
784
+ {
785
+ "epoch": 0.08,
786
+ "learning_rate": 1.8840579710144928e-05,
787
+ "loss": 1.8275,
788
+ "step": 130
789
+ },
790
+ {
791
+ "epoch": 0.09,
792
+ "learning_rate": 1.8985507246376814e-05,
793
+ "loss": 1.6933,
794
+ "step": 131
795
+ },
796
+ {
797
+ "epoch": 0.09,
798
+ "learning_rate": 1.9130434782608697e-05,
799
+ "loss": 1.7722,
800
+ "step": 132
801
+ },
802
+ {
803
+ "epoch": 0.09,
804
+ "learning_rate": 1.927536231884058e-05,
805
+ "loss": 1.7086,
806
+ "step": 133
807
+ },
808
+ {
809
+ "epoch": 0.09,
810
+ "learning_rate": 1.9420289855072467e-05,
811
+ "loss": 1.6655,
812
+ "step": 134
813
+ },
814
+ {
815
+ "epoch": 0.09,
816
+ "learning_rate": 1.956521739130435e-05,
817
+ "loss": 1.7234,
818
+ "step": 135
819
+ },
820
+ {
821
+ "epoch": 0.09,
822
+ "learning_rate": 1.9710144927536236e-05,
823
+ "loss": 1.729,
824
+ "step": 136
825
+ },
826
+ {
827
+ "epoch": 0.09,
828
+ "learning_rate": 1.9855072463768115e-05,
829
+ "loss": 1.6154,
830
+ "step": 137
831
+ },
832
+ {
833
+ "epoch": 0.09,
834
+ "learning_rate": 2e-05,
835
+ "loss": 1.8506,
836
+ "step": 138
837
+ },
838
+ {
839
+ "epoch": 0.09,
840
+ "learning_rate": 1.9999997510228907e-05,
841
+ "loss": 1.886,
842
+ "step": 139
843
+ },
844
+ {
845
+ "epoch": 0.09,
846
+ "learning_rate": 1.999999004091687e-05,
847
+ "loss": 1.768,
848
+ "step": 140
849
+ },
850
+ {
851
+ "epoch": 0.09,
852
+ "learning_rate": 1.9999977592067603e-05,
853
+ "loss": 1.6536,
854
+ "step": 141
855
+ },
856
+ {
857
+ "epoch": 0.09,
858
+ "learning_rate": 1.9999960163687307e-05,
859
+ "loss": 1.8171,
860
+ "step": 142
861
+ },
862
+ {
863
+ "epoch": 0.09,
864
+ "learning_rate": 1.999993775578466e-05,
865
+ "loss": 1.62,
866
+ "step": 143
867
+ },
868
+ {
869
+ "epoch": 0.09,
870
+ "learning_rate": 1.9999910368370826e-05,
871
+ "loss": 1.9765,
872
+ "step": 144
873
+ },
874
+ {
875
+ "epoch": 0.09,
876
+ "learning_rate": 1.9999878001459436e-05,
877
+ "loss": 1.7381,
878
+ "step": 145
879
+ },
880
+ {
881
+ "epoch": 0.1,
882
+ "learning_rate": 1.9999840655066608e-05,
883
+ "loss": 1.8361,
884
+ "step": 146
885
+ },
886
+ {
887
+ "epoch": 0.1,
888
+ "learning_rate": 1.9999798329210938e-05,
889
+ "loss": 1.7863,
890
+ "step": 147
891
+ },
892
+ {
893
+ "epoch": 0.1,
894
+ "learning_rate": 1.9999751023913506e-05,
895
+ "loss": 1.8941,
896
+ "step": 148
897
+ },
898
+ {
899
+ "epoch": 0.1,
900
+ "learning_rate": 1.999969873919787e-05,
901
+ "loss": 1.8171,
902
+ "step": 149
903
+ },
904
+ {
905
+ "epoch": 0.1,
906
+ "learning_rate": 1.999964147509006e-05,
907
+ "loss": 1.5924,
908
+ "step": 150
909
+ },
910
+ {
911
+ "epoch": 0.1,
912
+ "learning_rate": 1.9999579231618588e-05,
913
+ "loss": 1.6363,
914
+ "step": 151
915
+ },
916
+ {
917
+ "epoch": 0.1,
918
+ "learning_rate": 1.999951200881446e-05,
919
+ "loss": 1.6188,
920
+ "step": 152
921
+ },
922
+ {
923
+ "epoch": 0.1,
924
+ "learning_rate": 1.9999439806711137e-05,
925
+ "loss": 1.6399,
926
+ "step": 153
927
+ },
928
+ {
929
+ "epoch": 0.1,
930
+ "learning_rate": 1.9999362625344584e-05,
931
+ "loss": 1.7759,
932
+ "step": 154
933
+ },
934
+ {
935
+ "epoch": 0.1,
936
+ "learning_rate": 1.999928046475322e-05,
937
+ "loss": 1.7508,
938
+ "step": 155
939
+ },
940
+ {
941
+ "epoch": 0.1,
942
+ "learning_rate": 1.9999193324977974e-05,
943
+ "loss": 1.7955,
944
+ "step": 156
945
+ },
946
+ {
947
+ "epoch": 0.1,
948
+ "learning_rate": 1.9999101206062224e-05,
949
+ "loss": 1.9154,
950
+ "step": 157
951
+ },
952
+ {
953
+ "epoch": 0.1,
954
+ "learning_rate": 1.9999004108051846e-05,
955
+ "loss": 1.7574,
956
+ "step": 158
957
+ },
958
+ {
959
+ "epoch": 0.1,
960
+ "learning_rate": 1.999890203099519e-05,
961
+ "loss": 1.6867,
962
+ "step": 159
963
+ },
964
+ {
965
+ "epoch": 0.1,
966
+ "learning_rate": 1.9998794974943087e-05,
967
+ "loss": 1.8837,
968
+ "step": 160
969
+ },
970
+ {
971
+ "epoch": 0.11,
972
+ "learning_rate": 1.9998682939948843e-05,
973
+ "loss": 1.7995,
974
+ "step": 161
975
+ },
976
+ {
977
+ "epoch": 0.11,
978
+ "learning_rate": 1.9998565926068253e-05,
979
+ "loss": 1.7261,
980
+ "step": 162
981
+ },
982
+ {
983
+ "epoch": 0.11,
984
+ "learning_rate": 1.9998443933359576e-05,
985
+ "loss": 1.7059,
986
+ "step": 163
987
+ },
988
+ {
989
+ "epoch": 0.11,
990
+ "learning_rate": 1.9998316961883563e-05,
991
+ "loss": 1.8152,
992
+ "step": 164
993
+ },
994
+ {
995
+ "epoch": 0.11,
996
+ "learning_rate": 1.999818501170344e-05,
997
+ "loss": 1.7966,
998
+ "step": 165
999
+ },
1000
+ {
1001
+ "epoch": 0.11,
1002
+ "learning_rate": 1.999804808288491e-05,
1003
+ "loss": 1.4982,
1004
+ "step": 166
1005
+ },
1006
+ {
1007
+ "epoch": 0.11,
1008
+ "learning_rate": 1.999790617549616e-05,
1009
+ "loss": 1.9083,
1010
+ "step": 167
1011
+ },
1012
+ {
1013
+ "epoch": 0.11,
1014
+ "learning_rate": 1.9997759289607854e-05,
1015
+ "loss": 1.6917,
1016
+ "step": 168
1017
+ },
1018
+ {
1019
+ "epoch": 0.11,
1020
+ "learning_rate": 1.999760742529313e-05,
1021
+ "loss": 1.7672,
1022
+ "step": 169
1023
+ },
1024
+ {
1025
+ "epoch": 0.11,
1026
+ "learning_rate": 1.9997450582627614e-05,
1027
+ "loss": 1.8419,
1028
+ "step": 170
1029
+ },
1030
+ {
1031
+ "epoch": 0.11,
1032
+ "learning_rate": 1.9997288761689404e-05,
1033
+ "loss": 1.7393,
1034
+ "step": 171
1035
+ },
1036
+ {
1037
+ "epoch": 0.11,
1038
+ "learning_rate": 1.999712196255908e-05,
1039
+ "loss": 1.9489,
1040
+ "step": 172
1041
+ },
1042
+ {
1043
+ "epoch": 0.11,
1044
+ "learning_rate": 1.99969501853197e-05,
1045
+ "loss": 1.6927,
1046
+ "step": 173
1047
+ },
1048
+ {
1049
+ "epoch": 0.11,
1050
+ "learning_rate": 1.9996773430056806e-05,
1051
+ "loss": 1.729,
1052
+ "step": 174
1053
+ },
1054
+ {
1055
+ "epoch": 0.11,
1056
+ "learning_rate": 1.9996591696858407e-05,
1057
+ "loss": 1.8146,
1058
+ "step": 175
1059
+ },
1060
+ {
1061
+ "epoch": 0.12,
1062
+ "learning_rate": 1.9996404985814998e-05,
1063
+ "loss": 1.5406,
1064
+ "step": 176
1065
+ },
1066
+ {
1067
+ "epoch": 0.12,
1068
+ "learning_rate": 1.9996213297019556e-05,
1069
+ "loss": 1.834,
1070
+ "step": 177
1071
+ },
1072
+ {
1073
+ "epoch": 0.12,
1074
+ "learning_rate": 1.9996016630567535e-05,
1075
+ "loss": 1.8505,
1076
+ "step": 178
1077
+ },
1078
+ {
1079
+ "epoch": 0.12,
1080
+ "learning_rate": 1.999581498655686e-05,
1081
+ "loss": 1.5933,
1082
+ "step": 179
1083
+ },
1084
+ {
1085
+ "epoch": 0.12,
1086
+ "learning_rate": 1.9995608365087945e-05,
1087
+ "loss": 1.7946,
1088
+ "step": 180
1089
+ },
1090
+ {
1091
+ "epoch": 0.12,
1092
+ "learning_rate": 1.9995396766263677e-05,
1093
+ "loss": 1.6388,
1094
+ "step": 181
1095
+ },
1096
+ {
1097
+ "epoch": 0.12,
1098
+ "learning_rate": 1.9995180190189424e-05,
1099
+ "loss": 1.9924,
1100
+ "step": 182
1101
+ },
1102
+ {
1103
+ "epoch": 0.12,
1104
+ "learning_rate": 1.9994958636973024e-05,
1105
+ "loss": 1.5948,
1106
+ "step": 183
1107
+ },
1108
+ {
1109
+ "epoch": 0.12,
1110
+ "learning_rate": 1.999473210672481e-05,
1111
+ "loss": 1.5846,
1112
+ "step": 184
1113
+ },
1114
+ {
1115
+ "epoch": 0.12,
1116
+ "learning_rate": 1.9994500599557577e-05,
1117
+ "loss": 1.6471,
1118
+ "step": 185
1119
+ },
1120
+ {
1121
+ "epoch": 0.12,
1122
+ "learning_rate": 1.999426411558661e-05,
1123
+ "loss": 1.9565,
1124
+ "step": 186
1125
+ },
1126
+ {
1127
+ "epoch": 0.12,
1128
+ "learning_rate": 1.9994022654929665e-05,
1129
+ "loss": 1.6896,
1130
+ "step": 187
1131
+ },
1132
+ {
1133
+ "epoch": 0.12,
1134
+ "learning_rate": 1.9993776217706972e-05,
1135
+ "loss": 1.9445,
1136
+ "step": 188
1137
+ },
1138
+ {
1139
+ "epoch": 0.12,
1140
+ "learning_rate": 1.9993524804041255e-05,
1141
+ "loss": 1.714,
1142
+ "step": 189
1143
+ },
1144
+ {
1145
+ "epoch": 0.12,
1146
+ "learning_rate": 1.9993268414057704e-05,
1147
+ "loss": 1.7137,
1148
+ "step": 190
1149
+ },
1150
+ {
1151
+ "epoch": 0.12,
1152
+ "learning_rate": 1.9993007047883988e-05,
1153
+ "loss": 1.6729,
1154
+ "step": 191
1155
+ },
1156
+ {
1157
+ "epoch": 0.13,
1158
+ "learning_rate": 1.9992740705650252e-05,
1159
+ "loss": 1.691,
1160
+ "step": 192
1161
+ },
1162
+ {
1163
+ "epoch": 0.13,
1164
+ "learning_rate": 1.9992469387489127e-05,
1165
+ "loss": 1.7324,
1166
+ "step": 193
1167
+ },
1168
+ {
1169
+ "epoch": 0.13,
1170
+ "learning_rate": 1.999219309353572e-05,
1171
+ "loss": 1.57,
1172
+ "step": 194
1173
+ },
1174
+ {
1175
+ "epoch": 0.13,
1176
+ "learning_rate": 1.9991911823927607e-05,
1177
+ "loss": 2.0345,
1178
+ "step": 195
1179
+ },
1180
+ {
1181
+ "epoch": 0.13,
1182
+ "learning_rate": 1.999162557880485e-05,
1183
+ "loss": 1.5059,
1184
+ "step": 196
1185
+ },
1186
+ {
1187
+ "epoch": 0.13,
1188
+ "learning_rate": 1.999133435830998e-05,
1189
+ "loss": 1.8392,
1190
+ "step": 197
1191
+ },
1192
+ {
1193
+ "epoch": 0.13,
1194
+ "learning_rate": 1.9991038162588018e-05,
1195
+ "loss": 1.7923,
1196
+ "step": 198
1197
+ },
1198
+ {
1199
+ "epoch": 0.13,
1200
+ "learning_rate": 1.9990736991786453e-05,
1201
+ "loss": 1.78,
1202
+ "step": 199
1203
+ },
1204
+ {
1205
+ "epoch": 0.13,
1206
+ "learning_rate": 1.999043084605526e-05,
1207
+ "loss": 1.8779,
1208
+ "step": 200
1209
+ },
1210
+ {
1211
+ "epoch": 0.13,
1212
+ "learning_rate": 1.999011972554688e-05,
1213
+ "loss": 1.6544,
1214
+ "step": 201
1215
+ },
1216
+ {
1217
+ "epoch": 0.13,
1218
+ "learning_rate": 1.998980363041624e-05,
1219
+ "loss": 1.8014,
1220
+ "step": 202
1221
+ },
1222
+ {
1223
+ "epoch": 0.13,
1224
+ "learning_rate": 1.9989482560820734e-05,
1225
+ "loss": 1.6421,
1226
+ "step": 203
1227
+ },
1228
+ {
1229
+ "epoch": 0.13,
1230
+ "learning_rate": 1.9989156516920248e-05,
1231
+ "loss": 1.8874,
1232
+ "step": 204
1233
+ },
1234
+ {
1235
+ "epoch": 0.13,
1236
+ "learning_rate": 1.998882549887713e-05,
1237
+ "loss": 1.7511,
1238
+ "step": 205
1239
+ },
1240
+ {
1241
+ "epoch": 0.13,
1242
+ "learning_rate": 1.9988489506856218e-05,
1243
+ "loss": 1.7904,
1244
+ "step": 206
1245
+ },
1246
+ {
1247
+ "epoch": 0.14,
1248
+ "learning_rate": 1.998814854102482e-05,
1249
+ "loss": 1.7859,
1250
+ "step": 207
1251
+ },
1252
+ {
1253
+ "epoch": 0.14,
1254
+ "learning_rate": 1.9987802601552717e-05,
1255
+ "loss": 1.7957,
1256
+ "step": 208
1257
+ },
1258
+ {
1259
+ "epoch": 0.14,
1260
+ "learning_rate": 1.9987451688612176e-05,
1261
+ "loss": 1.6068,
1262
+ "step": 209
1263
+ },
1264
+ {
1265
+ "epoch": 0.14,
1266
+ "learning_rate": 1.9987095802377933e-05,
1267
+ "loss": 1.7852,
1268
+ "step": 210
1269
+ },
1270
+ {
1271
+ "epoch": 0.14,
1272
+ "learning_rate": 1.99867349430272e-05,
1273
+ "loss": 1.7431,
1274
+ "step": 211
1275
+ },
1276
+ {
1277
+ "epoch": 0.14,
1278
+ "learning_rate": 1.9986369110739675e-05,
1279
+ "loss": 1.8569,
1280
+ "step": 212
1281
+ },
1282
+ {
1283
+ "epoch": 0.14,
1284
+ "learning_rate": 1.998599830569752e-05,
1285
+ "loss": 1.6872,
1286
+ "step": 213
1287
+ },
1288
+ {
1289
+ "epoch": 0.14,
1290
+ "learning_rate": 1.9985622528085382e-05,
1291
+ "loss": 1.7792,
1292
+ "step": 214
1293
+ },
1294
+ {
1295
+ "epoch": 0.14,
1296
+ "learning_rate": 1.998524177809038e-05,
1297
+ "loss": 1.9195,
1298
+ "step": 215
1299
+ },
1300
+ {
1301
+ "epoch": 0.14,
1302
+ "learning_rate": 1.998485605590211e-05,
1303
+ "loss": 1.6664,
1304
+ "step": 216
1305
+ },
1306
+ {
1307
+ "epoch": 0.14,
1308
+ "learning_rate": 1.998446536171265e-05,
1309
+ "loss": 1.6921,
1310
+ "step": 217
1311
+ },
1312
+ {
1313
+ "epoch": 0.14,
1314
+ "learning_rate": 1.9984069695716534e-05,
1315
+ "loss": 1.7893,
1316
+ "step": 218
1317
+ },
1318
+ {
1319
+ "epoch": 0.14,
1320
+ "learning_rate": 1.99836690581108e-05,
1321
+ "loss": 1.8192,
1322
+ "step": 219
1323
+ },
1324
+ {
1325
+ "epoch": 0.14,
1326
+ "learning_rate": 1.998326344909494e-05,
1327
+ "loss": 1.885,
1328
+ "step": 220
1329
+ },
1330
+ {
1331
+ "epoch": 0.14,
1332
+ "learning_rate": 1.9982852868870927e-05,
1333
+ "loss": 1.556,
1334
+ "step": 221
1335
+ },
1336
+ {
1337
+ "epoch": 0.15,
1338
+ "learning_rate": 1.9982437317643218e-05,
1339
+ "loss": 1.7575,
1340
+ "step": 222
1341
+ },
1342
+ {
1343
+ "epoch": 0.15,
1344
+ "learning_rate": 1.998201679561873e-05,
1345
+ "loss": 1.7023,
1346
+ "step": 223
1347
+ },
1348
+ {
1349
+ "epoch": 0.15,
1350
+ "learning_rate": 1.998159130300687e-05,
1351
+ "loss": 1.6913,
1352
+ "step": 224
1353
+ },
1354
+ {
1355
+ "epoch": 0.15,
1356
+ "learning_rate": 1.9981160840019513e-05,
1357
+ "loss": 1.7819,
1358
+ "step": 225
1359
+ },
1360
+ {
1361
+ "epoch": 0.15,
1362
+ "learning_rate": 1.9980725406871007e-05,
1363
+ "loss": 1.5825,
1364
+ "step": 226
1365
+ },
1366
+ {
1367
+ "epoch": 0.15,
1368
+ "learning_rate": 1.998028500377818e-05,
1369
+ "loss": 1.9634,
1370
+ "step": 227
1371
+ },
1372
+ {
1373
+ "epoch": 0.15,
1374
+ "learning_rate": 1.9979839630960333e-05,
1375
+ "loss": 1.8114,
1376
+ "step": 228
1377
+ },
1378
+ {
1379
+ "epoch": 0.15,
1380
+ "learning_rate": 1.9979389288639237e-05,
1381
+ "loss": 1.6686,
1382
+ "step": 229
1383
+ },
1384
+ {
1385
+ "epoch": 0.15,
1386
+ "learning_rate": 1.997893397703915e-05,
1387
+ "loss": 1.8282,
1388
+ "step": 230
1389
+ },
1390
+ {
1391
+ "epoch": 0.15,
1392
+ "learning_rate": 1.9978473696386787e-05,
1393
+ "loss": 1.7462,
1394
+ "step": 231
1395
+ },
1396
+ {
1397
+ "epoch": 0.15,
1398
+ "learning_rate": 1.9978008446911354e-05,
1399
+ "loss": 1.7526,
1400
+ "step": 232
1401
+ },
1402
+ {
1403
+ "epoch": 0.15,
1404
+ "learning_rate": 1.997753822884452e-05,
1405
+ "loss": 1.6126,
1406
+ "step": 233
1407
+ },
1408
+ {
1409
+ "epoch": 0.15,
1410
+ "learning_rate": 1.9977063042420438e-05,
1411
+ "loss": 1.8654,
1412
+ "step": 234
1413
+ },
1414
+ {
1415
+ "epoch": 0.15,
1416
+ "learning_rate": 1.997658288787572e-05,
1417
+ "loss": 1.5399,
1418
+ "step": 235
1419
+ },
1420
+ {
1421
+ "epoch": 0.15,
1422
+ "learning_rate": 1.9976097765449463e-05,
1423
+ "loss": 1.8716,
1424
+ "step": 236
1425
+ },
1426
+ {
1427
+ "epoch": 0.15,
1428
+ "learning_rate": 1.9975607675383243e-05,
1429
+ "loss": 1.9406,
1430
+ "step": 237
1431
+ },
1432
+ {
1433
+ "epoch": 0.16,
1434
+ "learning_rate": 1.9975112617921097e-05,
1435
+ "loss": 1.7728,
1436
+ "step": 238
1437
+ },
1438
+ {
1439
+ "epoch": 0.16,
1440
+ "learning_rate": 1.997461259330954e-05,
1441
+ "loss": 1.8756,
1442
+ "step": 239
1443
+ },
1444
+ {
1445
+ "epoch": 0.16,
1446
+ "learning_rate": 1.997410760179756e-05,
1447
+ "loss": 1.8006,
1448
+ "step": 240
1449
+ },
1450
+ {
1451
+ "epoch": 0.16,
1452
+ "learning_rate": 1.997359764363663e-05,
1453
+ "loss": 1.7244,
1454
+ "step": 241
1455
+ },
1456
+ {
1457
+ "epoch": 0.16,
1458
+ "learning_rate": 1.9973082719080673e-05,
1459
+ "loss": 1.8612,
1460
+ "step": 242
1461
+ },
1462
+ {
1463
+ "epoch": 0.16,
1464
+ "learning_rate": 1.99725628283861e-05,
1465
+ "loss": 1.7037,
1466
+ "step": 243
1467
+ },
1468
+ {
1469
+ "epoch": 0.16,
1470
+ "learning_rate": 1.9972037971811802e-05,
1471
+ "loss": 1.939,
1472
+ "step": 244
1473
+ },
1474
+ {
1475
+ "epoch": 0.16,
1476
+ "learning_rate": 1.9971508149619126e-05,
1477
+ "loss": 1.5057,
1478
+ "step": 245
1479
+ },
1480
+ {
1481
+ "epoch": 0.16,
1482
+ "learning_rate": 1.99709733620719e-05,
1483
+ "loss": 1.9402,
1484
+ "step": 246
1485
+ },
1486
+ {
1487
+ "epoch": 0.16,
1488
+ "learning_rate": 1.9970433609436426e-05,
1489
+ "loss": 1.6762,
1490
+ "step": 247
1491
+ },
1492
+ {
1493
+ "epoch": 0.16,
1494
+ "learning_rate": 1.9969888891981473e-05,
1495
+ "loss": 1.8236,
1496
+ "step": 248
1497
+ },
1498
+ {
1499
+ "epoch": 0.16,
1500
+ "learning_rate": 1.9969339209978287e-05,
1501
+ "loss": 1.7346,
1502
+ "step": 249
1503
+ },
1504
+ {
1505
+ "epoch": 0.16,
1506
+ "learning_rate": 1.9968784563700586e-05,
1507
+ "loss": 1.5757,
1508
+ "step": 250
1509
+ },
1510
+ {
1511
+ "epoch": 0.16,
1512
+ "learning_rate": 1.9968224953424553e-05,
1513
+ "loss": 1.7573,
1514
+ "step": 251
1515
+ },
1516
+ {
1517
+ "epoch": 0.16,
1518
+ "learning_rate": 1.9967660379428855e-05,
1519
+ "loss": 1.5817,
1520
+ "step": 252
1521
+ },
1522
+ {
1523
+ "epoch": 0.17,
1524
+ "learning_rate": 1.996709084199462e-05,
1525
+ "loss": 1.5974,
1526
+ "step": 253
1527
+ },
1528
+ {
1529
+ "epoch": 0.17,
1530
+ "learning_rate": 1.9966516341405452e-05,
1531
+ "loss": 1.8537,
1532
+ "step": 254
1533
+ },
1534
+ {
1535
+ "epoch": 0.17,
1536
+ "learning_rate": 1.996593687794743e-05,
1537
+ "loss": 1.71,
1538
+ "step": 255
1539
+ },
1540
+ {
1541
+ "epoch": 0.17,
1542
+ "learning_rate": 1.996535245190909e-05,
1543
+ "loss": 1.7969,
1544
+ "step": 256
1545
+ },
1546
+ {
1547
+ "epoch": 0.17,
1548
+ "learning_rate": 1.9964763063581465e-05,
1549
+ "loss": 1.8761,
1550
+ "step": 257
1551
+ },
1552
+ {
1553
+ "epoch": 0.17,
1554
+ "learning_rate": 1.996416871325803e-05,
1555
+ "loss": 1.8265,
1556
+ "step": 258
1557
+ },
1558
+ {
1559
+ "epoch": 0.17,
1560
+ "learning_rate": 1.996356940123475e-05,
1561
+ "loss": 1.5745,
1562
+ "step": 259
1563
+ },
1564
+ {
1565
+ "epoch": 0.17,
1566
+ "learning_rate": 1.996296512781005e-05,
1567
+ "loss": 1.575,
1568
+ "step": 260
1569
+ },
1570
+ {
1571
+ "epoch": 0.17,
1572
+ "learning_rate": 1.996235589328484e-05,
1573
+ "loss": 1.537,
1574
+ "step": 261
1575
+ },
1576
+ {
1577
+ "epoch": 0.17,
1578
+ "learning_rate": 1.996174169796248e-05,
1579
+ "loss": 1.6117,
1580
+ "step": 262
1581
+ },
1582
+ {
1583
+ "epoch": 0.17,
1584
+ "learning_rate": 1.9961122542148823e-05,
1585
+ "loss": 1.7155,
1586
+ "step": 263
1587
+ },
1588
+ {
1589
+ "epoch": 0.17,
1590
+ "learning_rate": 1.996049842615217e-05,
1591
+ "loss": 1.6558,
1592
+ "step": 264
1593
+ },
1594
+ {
1595
+ "epoch": 0.17,
1596
+ "learning_rate": 1.9959869350283306e-05,
1597
+ "loss": 1.6215,
1598
+ "step": 265
1599
+ },
1600
+ {
1601
+ "epoch": 0.17,
1602
+ "learning_rate": 1.9959235314855485e-05,
1603
+ "loss": 1.877,
1604
+ "step": 266
1605
+ },
1606
+ {
1607
+ "epoch": 0.17,
1608
+ "learning_rate": 1.995859632018442e-05,
1609
+ "loss": 1.7136,
1610
+ "step": 267
1611
+ },
1612
+ {
1613
+ "epoch": 0.18,
1614
+ "learning_rate": 1.9957952366588307e-05,
1615
+ "loss": 1.6772,
1616
+ "step": 268
1617
+ },
1618
+ {
1619
+ "epoch": 0.18,
1620
+ "learning_rate": 1.9957303454387803e-05,
1621
+ "loss": 1.6511,
1622
+ "step": 269
1623
+ },
1624
+ {
1625
+ "epoch": 0.18,
1626
+ "learning_rate": 1.995664958390604e-05,
1627
+ "loss": 1.717,
1628
+ "step": 270
1629
+ },
1630
+ {
1631
+ "epoch": 0.18,
1632
+ "learning_rate": 1.9955990755468614e-05,
1633
+ "loss": 1.9313,
1634
+ "step": 271
1635
+ },
1636
+ {
1637
+ "epoch": 0.18,
1638
+ "learning_rate": 1.9955326969403587e-05,
1639
+ "loss": 1.8296,
1640
+ "step": 272
1641
+ },
1642
+ {
1643
+ "epoch": 0.18,
1644
+ "learning_rate": 1.99546582260415e-05,
1645
+ "loss": 1.7657,
1646
+ "step": 273
1647
+ },
1648
+ {
1649
+ "epoch": 0.18,
1650
+ "learning_rate": 1.9953984525715354e-05,
1651
+ "loss": 1.6089,
1652
+ "step": 274
1653
+ },
1654
+ {
1655
+ "epoch": 0.18,
1656
+ "learning_rate": 1.995330586876062e-05,
1657
+ "loss": 1.6183,
1658
+ "step": 275
1659
+ },
1660
+ {
1661
+ "epoch": 0.18,
1662
+ "learning_rate": 1.995262225551524e-05,
1663
+ "loss": 1.8083,
1664
+ "step": 276
1665
+ },
1666
+ {
1667
+ "epoch": 0.18,
1668
+ "learning_rate": 1.9951933686319624e-05,
1669
+ "loss": 1.7245,
1670
+ "step": 277
1671
+ },
1672
+ {
1673
+ "epoch": 0.18,
1674
+ "learning_rate": 1.9951240161516643e-05,
1675
+ "loss": 1.9381,
1676
+ "step": 278
1677
+ },
1678
+ {
1679
+ "epoch": 0.18,
1680
+ "learning_rate": 1.9950541681451644e-05,
1681
+ "loss": 1.6028,
1682
+ "step": 279
1683
+ },
1684
+ {
1685
+ "epoch": 0.18,
1686
+ "learning_rate": 1.9949838246472436e-05,
1687
+ "loss": 1.6434,
1688
+ "step": 280
1689
+ },
1690
+ {
1691
+ "epoch": 0.18,
1692
+ "learning_rate": 1.9949129856929295e-05,
1693
+ "loss": 1.7555,
1694
+ "step": 281
1695
+ },
1696
+ {
1697
+ "epoch": 0.18,
1698
+ "learning_rate": 1.9948416513174976e-05,
1699
+ "loss": 1.7311,
1700
+ "step": 282
1701
+ },
1702
+ {
1703
+ "epoch": 0.18,
1704
+ "learning_rate": 1.994769821556468e-05,
1705
+ "loss": 1.6387,
1706
+ "step": 283
1707
+ },
1708
+ {
1709
+ "epoch": 0.19,
1710
+ "learning_rate": 1.9946974964456094e-05,
1711
+ "loss": 1.8235,
1712
+ "step": 284
1713
+ },
1714
+ {
1715
+ "epoch": 0.19,
1716
+ "learning_rate": 1.994624676020936e-05,
1717
+ "loss": 1.9122,
1718
+ "step": 285
1719
+ },
1720
+ {
1721
+ "epoch": 0.19,
1722
+ "learning_rate": 1.9945513603187096e-05,
1723
+ "loss": 1.838,
1724
+ "step": 286
1725
+ },
1726
+ {
1727
+ "epoch": 0.19,
1728
+ "learning_rate": 1.9944775493754374e-05,
1729
+ "loss": 1.6418,
1730
+ "step": 287
1731
+ },
1732
+ {
1733
+ "epoch": 0.19,
1734
+ "learning_rate": 1.9944032432278743e-05,
1735
+ "loss": 1.5999,
1736
+ "step": 288
1737
+ },
1738
+ {
1739
+ "epoch": 0.19,
1740
+ "learning_rate": 1.994328441913021e-05,
1741
+ "loss": 1.8707,
1742
+ "step": 289
1743
+ },
1744
+ {
1745
+ "epoch": 0.19,
1746
+ "learning_rate": 1.9942531454681254e-05,
1747
+ "loss": 1.7181,
1748
+ "step": 290
1749
+ },
1750
+ {
1751
+ "epoch": 0.19,
1752
+ "learning_rate": 1.9941773539306818e-05,
1753
+ "loss": 1.999,
1754
+ "step": 291
1755
+ },
1756
+ {
1757
+ "epoch": 0.19,
1758
+ "learning_rate": 1.9941010673384307e-05,
1759
+ "loss": 1.7784,
1760
+ "step": 292
1761
+ },
1762
+ {
1763
+ "epoch": 0.19,
1764
+ "learning_rate": 1.9940242857293594e-05,
1765
+ "loss": 1.6533,
1766
+ "step": 293
1767
+ },
1768
+ {
1769
+ "epoch": 0.19,
1770
+ "learning_rate": 1.9939470091417012e-05,
1771
+ "loss": 1.7313,
1772
+ "step": 294
1773
+ },
1774
+ {
1775
+ "epoch": 0.19,
1776
+ "learning_rate": 1.993869237613937e-05,
1777
+ "loss": 1.6005,
1778
+ "step": 295
1779
+ },
1780
+ {
1781
+ "epoch": 0.19,
1782
+ "learning_rate": 1.993790971184793e-05,
1783
+ "loss": 1.8541,
1784
+ "step": 296
1785
+ },
1786
+ {
1787
+ "epoch": 0.19,
1788
+ "learning_rate": 1.9937122098932428e-05,
1789
+ "loss": 1.7487,
1790
+ "step": 297
1791
+ },
1792
+ {
1793
+ "epoch": 0.19,
1794
+ "learning_rate": 1.9936329537785054e-05,
1795
+ "loss": 1.9028,
1796
+ "step": 298
1797
+ },
1798
+ {
1799
+ "epoch": 0.2,
1800
+ "learning_rate": 1.9935532028800465e-05,
1801
+ "loss": 1.7109,
1802
+ "step": 299
1803
+ },
1804
+ {
1805
+ "epoch": 0.2,
1806
+ "learning_rate": 1.9934729572375792e-05,
1807
+ "loss": 1.5248,
1808
+ "step": 300
1809
+ },
1810
+ {
1811
+ "epoch": 0.2,
1812
+ "learning_rate": 1.9933922168910617e-05,
1813
+ "loss": 1.7893,
1814
+ "step": 301
1815
+ },
1816
+ {
1817
+ "epoch": 0.2,
1818
+ "learning_rate": 1.993310981880699e-05,
1819
+ "loss": 1.6346,
1820
+ "step": 302
1821
+ },
1822
+ {
1823
+ "epoch": 0.2,
1824
+ "learning_rate": 1.9932292522469424e-05,
1825
+ "loss": 1.6256,
1826
+ "step": 303
1827
+ },
1828
+ {
1829
+ "epoch": 0.2,
1830
+ "learning_rate": 1.9931470280304895e-05,
1831
+ "loss": 1.8888,
1832
+ "step": 304
1833
+ },
1834
+ {
1835
+ "epoch": 0.2,
1836
+ "learning_rate": 1.9930643092722843e-05,
1837
+ "loss": 1.6717,
1838
+ "step": 305
1839
+ },
1840
+ {
1841
+ "epoch": 0.2,
1842
+ "learning_rate": 1.992981096013517e-05,
1843
+ "loss": 1.9557,
1844
+ "step": 306
1845
+ },
1846
+ {
1847
+ "epoch": 0.2,
1848
+ "learning_rate": 1.992897388295624e-05,
1849
+ "loss": 1.9722,
1850
+ "step": 307
1851
+ },
1852
+ {
1853
+ "epoch": 0.2,
1854
+ "learning_rate": 1.9928131861602878e-05,
1855
+ "loss": 1.7194,
1856
+ "step": 308
1857
+ },
1858
+ {
1859
+ "epoch": 0.2,
1860
+ "learning_rate": 1.992728489649437e-05,
1861
+ "loss": 1.7614,
1862
+ "step": 309
1863
+ },
1864
+ {
1865
+ "epoch": 0.2,
1866
+ "learning_rate": 1.992643298805247e-05,
1867
+ "loss": 1.7441,
1868
+ "step": 310
1869
+ },
1870
+ {
1871
+ "epoch": 0.2,
1872
+ "learning_rate": 1.9925576136701386e-05,
1873
+ "loss": 1.728,
1874
+ "step": 311
1875
+ },
1876
+ {
1877
+ "epoch": 0.2,
1878
+ "learning_rate": 1.992471434286779e-05,
1879
+ "loss": 1.7892,
1880
+ "step": 312
1881
+ },
1882
+ {
1883
+ "epoch": 0.2,
1884
+ "learning_rate": 1.9923847606980824e-05,
1885
+ "loss": 1.6874,
1886
+ "step": 313
1887
+ },
1888
+ {
1889
+ "epoch": 0.21,
1890
+ "learning_rate": 1.9922975929472076e-05,
1891
+ "loss": 1.8102,
1892
+ "step": 314
1893
+ },
1894
+ {
1895
+ "epoch": 0.21,
1896
+ "learning_rate": 1.99220993107756e-05,
1897
+ "loss": 1.682,
1898
+ "step": 315
1899
+ },
1900
+ {
1901
+ "epoch": 0.21,
1902
+ "learning_rate": 1.9921217751327916e-05,
1903
+ "loss": 1.9336,
1904
+ "step": 316
1905
+ },
1906
+ {
1907
+ "epoch": 0.21,
1908
+ "learning_rate": 1.9920331251568e-05,
1909
+ "loss": 1.6113,
1910
+ "step": 317
1911
+ },
1912
+ {
1913
+ "epoch": 0.21,
1914
+ "learning_rate": 1.9919439811937283e-05,
1915
+ "loss": 1.9143,
1916
+ "step": 318
1917
+ },
1918
+ {
1919
+ "epoch": 0.21,
1920
+ "learning_rate": 1.9918543432879667e-05,
1921
+ "loss": 1.7181,
1922
+ "step": 319
1923
+ },
1924
+ {
1925
+ "epoch": 0.21,
1926
+ "learning_rate": 1.9917642114841505e-05,
1927
+ "loss": 1.6744,
1928
+ "step": 320
1929
+ },
1930
+ {
1931
+ "epoch": 0.21,
1932
+ "learning_rate": 1.9916735858271615e-05,
1933
+ "loss": 1.7523,
1934
+ "step": 321
1935
+ },
1936
+ {
1937
+ "epoch": 0.21,
1938
+ "learning_rate": 1.9915824663621267e-05,
1939
+ "loss": 1.78,
1940
+ "step": 322
1941
+ },
1942
+ {
1943
+ "epoch": 0.21,
1944
+ "learning_rate": 1.9914908531344198e-05,
1945
+ "loss": 1.9025,
1946
+ "step": 323
1947
+ },
1948
+ {
1949
+ "epoch": 0.21,
1950
+ "learning_rate": 1.9913987461896597e-05,
1951
+ "loss": 1.7448,
1952
+ "step": 324
1953
+ },
1954
+ {
1955
+ "epoch": 0.21,
1956
+ "learning_rate": 1.9913061455737116e-05,
1957
+ "loss": 1.8273,
1958
+ "step": 325
1959
+ },
1960
+ {
1961
+ "epoch": 0.21,
1962
+ "learning_rate": 1.9912130513326863e-05,
1963
+ "loss": 1.6921,
1964
+ "step": 326
1965
+ },
1966
+ {
1967
+ "epoch": 0.21,
1968
+ "learning_rate": 1.991119463512941e-05,
1969
+ "loss": 1.7164,
1970
+ "step": 327
1971
+ },
1972
+ {
1973
+ "epoch": 0.21,
1974
+ "learning_rate": 1.991025382161077e-05,
1975
+ "loss": 1.6556,
1976
+ "step": 328
1977
+ },
1978
+ {
1979
+ "epoch": 0.21,
1980
+ "learning_rate": 1.9909308073239433e-05,
1981
+ "loss": 1.6554,
1982
+ "step": 329
1983
+ },
1984
+ {
1985
+ "epoch": 0.22,
1986
+ "learning_rate": 1.9908357390486342e-05,
1987
+ "loss": 1.7639,
1988
+ "step": 330
1989
+ },
1990
+ {
1991
+ "epoch": 0.22,
1992
+ "learning_rate": 1.9907401773824887e-05,
1993
+ "loss": 1.7496,
1994
+ "step": 331
1995
+ },
1996
+ {
1997
+ "epoch": 0.22,
1998
+ "learning_rate": 1.990644122373092e-05,
1999
+ "loss": 1.8797,
2000
+ "step": 332
2001
+ },
2002
+ {
2003
+ "epoch": 0.22,
2004
+ "learning_rate": 1.9905475740682756e-05,
2005
+ "loss": 1.5464,
2006
+ "step": 333
2007
+ },
2008
+ {
2009
+ "epoch": 0.22,
2010
+ "learning_rate": 1.990450532516116e-05,
2011
+ "loss": 1.7168,
2012
+ "step": 334
2013
+ },
2014
+ {
2015
+ "epoch": 0.22,
2016
+ "learning_rate": 1.990352997764935e-05,
2017
+ "loss": 1.7238,
2018
+ "step": 335
2019
+ },
2020
+ {
2021
+ "epoch": 0.22,
2022
+ "learning_rate": 1.990254969863301e-05,
2023
+ "loss": 1.983,
2024
+ "step": 336
2025
+ },
2026
+ {
2027
+ "epoch": 0.22,
2028
+ "learning_rate": 1.9901564488600274e-05,
2029
+ "loss": 1.6583,
2030
+ "step": 337
2031
+ },
2032
+ {
2033
+ "epoch": 0.22,
2034
+ "learning_rate": 1.9900574348041728e-05,
2035
+ "loss": 1.9771,
2036
+ "step": 338
2037
+ },
2038
+ {
2039
+ "epoch": 0.22,
2040
+ "learning_rate": 1.9899579277450417e-05,
2041
+ "loss": 1.7111,
2042
+ "step": 339
2043
+ },
2044
+ {
2045
+ "epoch": 0.22,
2046
+ "learning_rate": 1.9898579277321845e-05,
2047
+ "loss": 1.8824,
2048
+ "step": 340
2049
+ },
2050
+ {
2051
+ "epoch": 0.22,
2052
+ "learning_rate": 1.9897574348153963e-05,
2053
+ "loss": 1.7126,
2054
+ "step": 341
2055
+ },
2056
+ {
2057
+ "epoch": 0.22,
2058
+ "learning_rate": 1.989656449044718e-05,
2059
+ "loss": 1.6109,
2060
+ "step": 342
2061
+ },
2062
+ {
2063
+ "epoch": 0.22,
2064
+ "learning_rate": 1.9895549704704358e-05,
2065
+ "loss": 1.6111,
2066
+ "step": 343
2067
+ },
2068
+ {
2069
+ "epoch": 0.22,
2070
+ "learning_rate": 1.9894529991430814e-05,
2071
+ "loss": 1.5684,
2072
+ "step": 344
2073
+ },
2074
+ {
2075
+ "epoch": 0.23,
2076
+ "learning_rate": 1.9893505351134322e-05,
2077
+ "loss": 1.7286,
2078
+ "step": 345
2079
+ },
2080
+ {
2081
+ "epoch": 0.23,
2082
+ "learning_rate": 1.98924757843251e-05,
2083
+ "loss": 1.6518,
2084
+ "step": 346
2085
+ },
2086
+ {
2087
+ "epoch": 0.23,
2088
+ "learning_rate": 1.989144129151583e-05,
2089
+ "loss": 1.6504,
2090
+ "step": 347
2091
+ },
2092
+ {
2093
+ "epoch": 0.23,
2094
+ "learning_rate": 1.9890401873221642e-05,
2095
+ "loss": 1.4915,
2096
+ "step": 348
2097
+ },
2098
+ {
2099
+ "epoch": 0.23,
2100
+ "learning_rate": 1.9889357529960114e-05,
2101
+ "loss": 1.7182,
2102
+ "step": 349
2103
+ },
2104
+ {
2105
+ "epoch": 0.23,
2106
+ "learning_rate": 1.9888308262251286e-05,
2107
+ "loss": 1.6,
2108
+ "step": 350
2109
+ },
2110
+ {
2111
+ "epoch": 0.23,
2112
+ "learning_rate": 1.9887254070617644e-05,
2113
+ "loss": 1.6773,
2114
+ "step": 351
2115
+ },
2116
+ {
2117
+ "epoch": 0.23,
2118
+ "learning_rate": 1.9886194955584126e-05,
2119
+ "loss": 1.7222,
2120
+ "step": 352
2121
+ },
2122
+ {
2123
+ "epoch": 0.23,
2124
+ "learning_rate": 1.9885130917678123e-05,
2125
+ "loss": 1.799,
2126
+ "step": 353
2127
+ },
2128
+ {
2129
+ "epoch": 0.23,
2130
+ "learning_rate": 1.988406195742948e-05,
2131
+ "loss": 1.9064,
2132
+ "step": 354
2133
+ },
2134
+ {
2135
+ "epoch": 0.23,
2136
+ "learning_rate": 1.988298807537049e-05,
2137
+ "loss": 1.652,
2138
+ "step": 355
2139
+ },
2140
+ {
2141
+ "epoch": 0.23,
2142
+ "learning_rate": 1.9881909272035888e-05,
2143
+ "loss": 1.8517,
2144
+ "step": 356
2145
+ },
2146
+ {
2147
+ "epoch": 0.23,
2148
+ "learning_rate": 1.9880825547962882e-05,
2149
+ "loss": 1.7441,
2150
+ "step": 357
2151
+ },
2152
+ {
2153
+ "epoch": 0.23,
2154
+ "learning_rate": 1.9879736903691107e-05,
2155
+ "loss": 1.6021,
2156
+ "step": 358
2157
+ },
2158
+ {
2159
+ "epoch": 0.23,
2160
+ "learning_rate": 1.9878643339762663e-05,
2161
+ "loss": 1.7011,
2162
+ "step": 359
2163
+ },
2164
+ {
2165
+ "epoch": 0.24,
2166
+ "learning_rate": 1.9877544856722094e-05,
2167
+ "loss": 1.6778,
2168
+ "step": 360
2169
+ },
2170
+ {
2171
+ "epoch": 0.24,
2172
+ "learning_rate": 1.9876441455116393e-05,
2173
+ "loss": 1.7144,
2174
+ "step": 361
2175
+ },
2176
+ {
2177
+ "epoch": 0.24,
2178
+ "learning_rate": 1.9875333135495e-05,
2179
+ "loss": 2.0308,
2180
+ "step": 362
2181
+ },
2182
+ {
2183
+ "epoch": 0.24,
2184
+ "learning_rate": 1.987421989840982e-05,
2185
+ "loss": 1.7471,
2186
+ "step": 363
2187
+ },
2188
+ {
2189
+ "epoch": 0.24,
2190
+ "learning_rate": 1.987310174441518e-05,
2191
+ "loss": 1.5851,
2192
+ "step": 364
2193
+ },
2194
+ {
2195
+ "epoch": 0.24,
2196
+ "learning_rate": 1.987197867406788e-05,
2197
+ "loss": 1.873,
2198
+ "step": 365
2199
+ },
2200
+ {
2201
+ "epoch": 0.24,
2202
+ "learning_rate": 1.987085068792715e-05,
2203
+ "loss": 1.7713,
2204
+ "step": 366
2205
+ },
2206
+ {
2207
+ "epoch": 0.24,
2208
+ "learning_rate": 1.986971778655468e-05,
2209
+ "loss": 1.6572,
2210
+ "step": 367
2211
+ },
2212
+ {
2213
+ "epoch": 0.24,
2214
+ "learning_rate": 1.98685799705146e-05,
2215
+ "loss": 1.7438,
2216
+ "step": 368
2217
+ },
2218
+ {
2219
+ "epoch": 0.24,
2220
+ "learning_rate": 1.986743724037349e-05,
2221
+ "loss": 1.7512,
2222
+ "step": 369
2223
+ },
2224
+ {
2225
+ "epoch": 0.24,
2226
+ "learning_rate": 1.9866289596700383e-05,
2227
+ "loss": 1.7058,
2228
+ "step": 370
2229
+ },
2230
+ {
2231
+ "epoch": 0.24,
2232
+ "learning_rate": 1.9865137040066744e-05,
2233
+ "loss": 1.7243,
2234
+ "step": 371
2235
+ },
2236
+ {
2237
+ "epoch": 0.24,
2238
+ "learning_rate": 1.98639795710465e-05,
2239
+ "loss": 1.5387,
2240
+ "step": 372
2241
+ },
2242
+ {
2243
+ "epoch": 0.24,
2244
+ "learning_rate": 1.986281719021602e-05,
2245
+ "loss": 1.8603,
2246
+ "step": 373
2247
+ },
2248
+ {
2249
+ "epoch": 0.24,
2250
+ "learning_rate": 1.9861649898154107e-05,
2251
+ "loss": 1.7283,
2252
+ "step": 374
2253
+ },
2254
+ {
2255
+ "epoch": 0.25,
2256
+ "learning_rate": 1.986047769544203e-05,
2257
+ "loss": 1.6644,
2258
+ "step": 375
2259
+ },
2260
+ {
2261
+ "epoch": 0.25,
2262
+ "learning_rate": 1.985930058266348e-05,
2263
+ "loss": 1.455,
2264
+ "step": 376
2265
+ },
2266
+ {
2267
+ "epoch": 0.25,
2268
+ "learning_rate": 1.985811856040462e-05,
2269
+ "loss": 1.6884,
2270
+ "step": 377
2271
+ },
2272
+ {
2273
+ "epoch": 0.25,
2274
+ "learning_rate": 1.9856931629254032e-05,
2275
+ "loss": 1.7179,
2276
+ "step": 378
2277
+ },
2278
+ {
2279
+ "epoch": 0.25,
2280
+ "learning_rate": 1.9855739789802753e-05,
2281
+ "loss": 1.9469,
2282
+ "step": 379
2283
+ },
2284
+ {
2285
+ "epoch": 0.25,
2286
+ "learning_rate": 1.985454304264427e-05,
2287
+ "loss": 1.6094,
2288
+ "step": 380
2289
+ },
2290
+ {
2291
+ "epoch": 0.25,
2292
+ "learning_rate": 1.9853341388374504e-05,
2293
+ "loss": 1.6679,
2294
+ "step": 381
2295
+ },
2296
+ {
2297
+ "epoch": 0.25,
2298
+ "learning_rate": 1.985213482759183e-05,
2299
+ "loss": 1.5478,
2300
+ "step": 382
2301
+ },
2302
+ {
2303
+ "epoch": 0.25,
2304
+ "learning_rate": 1.9850923360897055e-05,
2305
+ "loss": 1.6236,
2306
+ "step": 383
2307
+ },
2308
+ {
2309
+ "epoch": 0.25,
2310
+ "learning_rate": 1.9849706988893433e-05,
2311
+ "loss": 1.8009,
2312
+ "step": 384
2313
+ },
2314
+ {
2315
+ "epoch": 0.25,
2316
+ "learning_rate": 1.9848485712186665e-05,
2317
+ "loss": 1.4946,
2318
+ "step": 385
2319
+ },
2320
+ {
2321
+ "epoch": 0.25,
2322
+ "learning_rate": 1.984725953138489e-05,
2323
+ "loss": 1.6641,
2324
+ "step": 386
2325
+ },
2326
+ {
2327
+ "epoch": 0.25,
2328
+ "learning_rate": 1.9846028447098687e-05,
2329
+ "loss": 1.6904,
2330
+ "step": 387
2331
+ },
2332
+ {
2333
+ "epoch": 0.25,
2334
+ "learning_rate": 1.984479245994108e-05,
2335
+ "loss": 1.6803,
2336
+ "step": 388
2337
+ },
2338
+ {
2339
+ "epoch": 0.25,
2340
+ "learning_rate": 1.9843551570527543e-05,
2341
+ "loss": 1.8788,
2342
+ "step": 389
2343
+ },
2344
+ {
2345
+ "epoch": 0.25,
2346
+ "learning_rate": 1.984230577947597e-05,
2347
+ "loss": 1.8476,
2348
+ "step": 390
2349
+ },
2350
+ {
2351
+ "epoch": 0.26,
2352
+ "learning_rate": 1.9841055087406715e-05,
2353
+ "loss": 1.5684,
2354
+ "step": 391
2355
+ },
2356
+ {
2357
+ "epoch": 0.26,
2358
+ "learning_rate": 1.983979949494256e-05,
2359
+ "loss": 1.4454,
2360
+ "step": 392
2361
+ },
2362
+ {
2363
+ "epoch": 0.26,
2364
+ "learning_rate": 1.983853900270874e-05,
2365
+ "loss": 1.6985,
2366
+ "step": 393
2367
+ },
2368
+ {
2369
+ "epoch": 0.26,
2370
+ "learning_rate": 1.9837273611332918e-05,
2371
+ "loss": 1.9378,
2372
+ "step": 394
2373
+ },
2374
+ {
2375
+ "epoch": 0.26,
2376
+ "learning_rate": 1.9836003321445198e-05,
2377
+ "loss": 1.5318,
2378
+ "step": 395
2379
+ },
2380
+ {
2381
+ "epoch": 0.26,
2382
+ "learning_rate": 1.983472813367813e-05,
2383
+ "loss": 1.7142,
2384
+ "step": 396
2385
+ },
2386
+ {
2387
+ "epoch": 0.26,
2388
+ "learning_rate": 1.98334480486667e-05,
2389
+ "loss": 1.7121,
2390
+ "step": 397
2391
+ },
2392
+ {
2393
+ "epoch": 0.26,
2394
+ "learning_rate": 1.9832163067048335e-05,
2395
+ "loss": 1.7841,
2396
+ "step": 398
2397
+ },
2398
+ {
2399
+ "epoch": 0.26,
2400
+ "learning_rate": 1.9830873189462886e-05,
2401
+ "loss": 1.6868,
2402
+ "step": 399
2403
+ },
2404
+ {
2405
+ "epoch": 0.26,
2406
+ "learning_rate": 1.982957841655266e-05,
2407
+ "loss": 1.9112,
2408
+ "step": 400
2409
+ },
2410
+ {
2411
+ "epoch": 0.26,
2412
+ "learning_rate": 1.9828278748962396e-05,
2413
+ "loss": 1.5438,
2414
+ "step": 401
2415
+ },
2416
+ {
2417
+ "epoch": 0.26,
2418
+ "learning_rate": 1.9826974187339267e-05,
2419
+ "loss": 1.8109,
2420
+ "step": 402
2421
+ },
2422
+ {
2423
+ "epoch": 0.26,
2424
+ "learning_rate": 1.9825664732332886e-05,
2425
+ "loss": 1.784,
2426
+ "step": 403
2427
+ },
2428
+ {
2429
+ "epoch": 0.26,
2430
+ "learning_rate": 1.9824350384595295e-05,
2431
+ "loss": 1.5111,
2432
+ "step": 404
2433
+ },
2434
+ {
2435
+ "epoch": 0.26,
2436
+ "learning_rate": 1.982303114478099e-05,
2437
+ "loss": 1.5256,
2438
+ "step": 405
2439
+ },
2440
+ {
2441
+ "epoch": 0.27,
2442
+ "learning_rate": 1.9821707013546885e-05,
2443
+ "loss": 1.6807,
2444
+ "step": 406
2445
+ },
2446
+ {
2447
+ "epoch": 0.27,
2448
+ "learning_rate": 1.9820377991552338e-05,
2449
+ "loss": 1.606,
2450
+ "step": 407
2451
+ },
2452
+ {
2453
+ "epoch": 0.27,
2454
+ "learning_rate": 1.9819044079459142e-05,
2455
+ "loss": 1.5803,
2456
+ "step": 408
2457
+ },
2458
+ {
2459
+ "epoch": 0.27,
2460
+ "learning_rate": 1.9817705277931526e-05,
2461
+ "loss": 1.7415,
2462
+ "step": 409
2463
+ },
2464
+ {
2465
+ "epoch": 0.27,
2466
+ "learning_rate": 1.9816361587636143e-05,
2467
+ "loss": 1.7781,
2468
+ "step": 410
2469
+ },
2470
+ {
2471
+ "epoch": 0.27,
2472
+ "learning_rate": 1.9815013009242103e-05,
2473
+ "loss": 1.679,
2474
+ "step": 411
2475
+ },
2476
+ {
2477
+ "epoch": 0.27,
2478
+ "learning_rate": 1.9813659543420924e-05,
2479
+ "loss": 1.7402,
2480
+ "step": 412
2481
+ },
2482
+ {
2483
+ "epoch": 0.27,
2484
+ "learning_rate": 1.981230119084658e-05,
2485
+ "loss": 1.6561,
2486
+ "step": 413
2487
+ },
2488
+ {
2489
+ "epoch": 0.27,
2490
+ "learning_rate": 1.981093795219546e-05,
2491
+ "loss": 1.4753,
2492
+ "step": 414
2493
+ },
2494
+ {
2495
+ "epoch": 0.27,
2496
+ "learning_rate": 1.9809569828146396e-05,
2497
+ "loss": 1.8676,
2498
+ "step": 415
2499
+ },
2500
+ {
2501
+ "epoch": 0.27,
2502
+ "learning_rate": 1.9808196819380656e-05,
2503
+ "loss": 1.5367,
2504
+ "step": 416
2505
+ },
2506
+ {
2507
+ "epoch": 0.27,
2508
+ "learning_rate": 1.980681892658193e-05,
2509
+ "loss": 1.7324,
2510
+ "step": 417
2511
+ },
2512
+ {
2513
+ "epoch": 0.27,
2514
+ "learning_rate": 1.9805436150436352e-05,
2515
+ "loss": 1.6161,
2516
+ "step": 418
2517
+ },
2518
+ {
2519
+ "epoch": 0.27,
2520
+ "learning_rate": 1.9804048491632475e-05,
2521
+ "loss": 1.5056,
2522
+ "step": 419
2523
+ },
2524
+ {
2525
+ "epoch": 0.27,
2526
+ "learning_rate": 1.980265595086129e-05,
2527
+ "loss": 1.7321,
2528
+ "step": 420
2529
+ },
2530
+ {
2531
+ "epoch": 0.28,
2532
+ "learning_rate": 1.9801258528816223e-05,
2533
+ "loss": 1.5752,
2534
+ "step": 421
2535
+ },
2536
+ {
2537
+ "epoch": 0.28,
2538
+ "learning_rate": 1.9799856226193125e-05,
2539
+ "loss": 1.8505,
2540
+ "step": 422
2541
+ },
2542
+ {
2543
+ "epoch": 0.28,
2544
+ "learning_rate": 1.9798449043690272e-05,
2545
+ "loss": 1.7899,
2546
+ "step": 423
2547
+ },
2548
+ {
2549
+ "epoch": 0.28,
2550
+ "learning_rate": 1.9797036982008385e-05,
2551
+ "loss": 1.8264,
2552
+ "step": 424
2553
+ },
2554
+ {
2555
+ "epoch": 0.28,
2556
+ "learning_rate": 1.9795620041850602e-05,
2557
+ "loss": 1.9919,
2558
+ "step": 425
2559
+ },
2560
+ {
2561
+ "epoch": 0.28,
2562
+ "learning_rate": 1.9794198223922496e-05,
2563
+ "loss": 1.6524,
2564
+ "step": 426
2565
+ },
2566
+ {
2567
+ "epoch": 0.28,
2568
+ "learning_rate": 1.9792771528932064e-05,
2569
+ "loss": 1.7086,
2570
+ "step": 427
2571
+ },
2572
+ {
2573
+ "epoch": 0.28,
2574
+ "learning_rate": 1.979133995758974e-05,
2575
+ "loss": 1.8144,
2576
+ "step": 428
2577
+ },
2578
+ {
2579
+ "epoch": 0.28,
2580
+ "learning_rate": 1.9789903510608374e-05,
2581
+ "loss": 1.5938,
2582
+ "step": 429
2583
+ },
2584
+ {
2585
+ "epoch": 0.28,
2586
+ "learning_rate": 1.978846218870326e-05,
2587
+ "loss": 1.8841,
2588
+ "step": 430
2589
+ },
2590
+ {
2591
+ "epoch": 0.28,
2592
+ "learning_rate": 1.97870159925921e-05,
2593
+ "loss": 1.6414,
2594
+ "step": 431
2595
+ },
2596
+ {
2597
+ "epoch": 0.28,
2598
+ "learning_rate": 1.9785564922995042e-05,
2599
+ "loss": 1.6442,
2600
+ "step": 432
2601
+ },
2602
+ {
2603
+ "epoch": 0.28,
2604
+ "learning_rate": 1.978410898063465e-05,
2605
+ "loss": 1.6781,
2606
+ "step": 433
2607
+ },
2608
+ {
2609
+ "epoch": 0.28,
2610
+ "learning_rate": 1.978264816623591e-05,
2611
+ "loss": 1.6857,
2612
+ "step": 434
2613
+ },
2614
+ {
2615
+ "epoch": 0.28,
2616
+ "learning_rate": 1.978118248052625e-05,
2617
+ "loss": 1.6302,
2618
+ "step": 435
2619
+ },
2620
+ {
2621
+ "epoch": 0.28,
2622
+ "learning_rate": 1.977971192423551e-05,
2623
+ "loss": 1.7229,
2624
+ "step": 436
2625
+ },
2626
+ {
2627
+ "epoch": 0.29,
2628
+ "learning_rate": 1.977823649809596e-05,
2629
+ "loss": 1.8492,
2630
+ "step": 437
2631
+ },
2632
+ {
2633
+ "epoch": 0.29,
2634
+ "learning_rate": 1.9776756202842297e-05,
2635
+ "loss": 1.7095,
2636
+ "step": 438
2637
+ },
2638
+ {
2639
+ "epoch": 0.29,
2640
+ "learning_rate": 1.9775271039211633e-05,
2641
+ "loss": 1.8962,
2642
+ "step": 439
2643
+ },
2644
+ {
2645
+ "epoch": 0.29,
2646
+ "learning_rate": 1.977378100794352e-05,
2647
+ "loss": 1.809,
2648
+ "step": 440
2649
+ },
2650
+ {
2651
+ "epoch": 0.29,
2652
+ "learning_rate": 1.977228610977992e-05,
2653
+ "loss": 1.5157,
2654
+ "step": 441
2655
+ },
2656
+ {
2657
+ "epoch": 0.29,
2658
+ "learning_rate": 1.977078634546523e-05,
2659
+ "loss": 1.8447,
2660
+ "step": 442
2661
+ },
2662
+ {
2663
+ "epoch": 0.29,
2664
+ "learning_rate": 1.9769281715746258e-05,
2665
+ "loss": 1.5596,
2666
+ "step": 443
2667
+ },
2668
+ {
2669
+ "epoch": 0.29,
2670
+ "learning_rate": 1.976777222137224e-05,
2671
+ "loss": 1.6913,
2672
+ "step": 444
2673
+ },
2674
+ {
2675
+ "epoch": 0.29,
2676
+ "learning_rate": 1.9766257863094843e-05,
2677
+ "loss": 1.5567,
2678
+ "step": 445
2679
+ },
2680
+ {
2681
+ "epoch": 0.29,
2682
+ "learning_rate": 1.9764738641668137e-05,
2683
+ "loss": 1.7594,
2684
+ "step": 446
2685
+ },
2686
+ {
2687
+ "epoch": 0.29,
2688
+ "learning_rate": 1.9763214557848634e-05,
2689
+ "loss": 1.8343,
2690
+ "step": 447
2691
+ },
2692
+ {
2693
+ "epoch": 0.29,
2694
+ "learning_rate": 1.9761685612395253e-05,
2695
+ "loss": 1.8573,
2696
+ "step": 448
2697
+ },
2698
+ {
2699
+ "epoch": 0.29,
2700
+ "learning_rate": 1.976015180606934e-05,
2701
+ "loss": 1.6969,
2702
+ "step": 449
2703
+ },
2704
+ {
2705
+ "epoch": 0.29,
2706
+ "learning_rate": 1.9758613139634662e-05,
2707
+ "loss": 1.6318,
2708
+ "step": 450
2709
+ },
2710
+ {
2711
+ "epoch": 0.29,
2712
+ "learning_rate": 1.9757069613857404e-05,
2713
+ "loss": 1.7388,
2714
+ "step": 451
2715
+ },
2716
+ {
2717
+ "epoch": 0.3,
2718
+ "learning_rate": 1.9755521229506164e-05,
2719
+ "loss": 1.7768,
2720
+ "step": 452
2721
+ },
2722
+ {
2723
+ "epoch": 0.3,
2724
+ "learning_rate": 1.975396798735198e-05,
2725
+ "loss": 1.684,
2726
+ "step": 453
2727
+ },
2728
+ {
2729
+ "epoch": 0.3,
2730
+ "learning_rate": 1.9752409888168285e-05,
2731
+ "loss": 1.6109,
2732
+ "step": 454
2733
+ },
2734
+ {
2735
+ "epoch": 0.3,
2736
+ "learning_rate": 1.9750846932730947e-05,
2737
+ "loss": 1.8364,
2738
+ "step": 455
2739
+ },
2740
+ {
2741
+ "epoch": 0.3,
2742
+ "learning_rate": 1.9749279121818235e-05,
2743
+ "loss": 1.8766,
2744
+ "step": 456
2745
+ },
2746
+ {
2747
+ "epoch": 0.3,
2748
+ "learning_rate": 1.9747706456210865e-05,
2749
+ "loss": 1.5277,
2750
+ "step": 457
2751
+ },
2752
+ {
2753
+ "epoch": 0.3,
2754
+ "learning_rate": 1.974612893669194e-05,
2755
+ "loss": 1.8831,
2756
+ "step": 458
2757
+ },
2758
+ {
2759
+ "epoch": 0.3,
2760
+ "learning_rate": 1.9744546564046995e-05,
2761
+ "loss": 1.8072,
2762
+ "step": 459
2763
+ },
2764
+ {
2765
+ "epoch": 0.3,
2766
+ "learning_rate": 1.9742959339063977e-05,
2767
+ "loss": 1.7829,
2768
+ "step": 460
2769
+ },
2770
+ {
2771
+ "epoch": 0.3,
2772
+ "learning_rate": 1.974136726253326e-05,
2773
+ "loss": 1.708,
2774
+ "step": 461
2775
+ },
2776
+ {
2777
+ "epoch": 0.3,
2778
+ "learning_rate": 1.9739770335247616e-05,
2779
+ "loss": 1.6817,
2780
+ "step": 462
2781
+ },
2782
+ {
2783
+ "epoch": 0.3,
2784
+ "learning_rate": 1.9738168558002245e-05,
2785
+ "loss": 1.8286,
2786
+ "step": 463
2787
+ },
2788
+ {
2789
+ "epoch": 0.3,
2790
+ "learning_rate": 1.973656193159476e-05,
2791
+ "loss": 1.8612,
2792
+ "step": 464
2793
+ },
2794
+ {
2795
+ "epoch": 0.3,
2796
+ "learning_rate": 1.9734950456825187e-05,
2797
+ "loss": 1.7412,
2798
+ "step": 465
2799
+ },
2800
+ {
2801
+ "epoch": 0.3,
2802
+ "learning_rate": 1.9733334134495963e-05,
2803
+ "loss": 1.6253,
2804
+ "step": 466
2805
+ },
2806
+ {
2807
+ "epoch": 0.31,
2808
+ "learning_rate": 1.9731712965411947e-05,
2809
+ "loss": 1.8272,
2810
+ "step": 467
2811
+ },
2812
+ {
2813
+ "epoch": 0.31,
2814
+ "learning_rate": 1.9730086950380404e-05,
2815
+ "loss": 1.6659,
2816
+ "step": 468
2817
+ },
2818
+ {
2819
+ "epoch": 0.31,
2820
+ "learning_rate": 1.9728456090211017e-05,
2821
+ "loss": 1.7135,
2822
+ "step": 469
2823
+ },
2824
+ {
2825
+ "epoch": 0.31,
2826
+ "learning_rate": 1.9726820385715877e-05,
2827
+ "loss": 1.9411,
2828
+ "step": 470
2829
+ },
2830
+ {
2831
+ "epoch": 0.31,
2832
+ "learning_rate": 1.9725179837709494e-05,
2833
+ "loss": 1.7032,
2834
+ "step": 471
2835
+ },
2836
+ {
2837
+ "epoch": 0.31,
2838
+ "learning_rate": 1.9723534447008785e-05,
2839
+ "loss": 1.7129,
2840
+ "step": 472
2841
+ },
2842
+ {
2843
+ "epoch": 0.31,
2844
+ "learning_rate": 1.9721884214433077e-05,
2845
+ "loss": 1.8704,
2846
+ "step": 473
2847
+ },
2848
+ {
2849
+ "epoch": 0.31,
2850
+ "learning_rate": 1.972022914080411e-05,
2851
+ "loss": 1.667,
2852
+ "step": 474
2853
+ },
2854
+ {
2855
+ "epoch": 0.31,
2856
+ "learning_rate": 1.9718569226946035e-05,
2857
+ "loss": 1.5918,
2858
+ "step": 475
2859
+ },
2860
+ {
2861
+ "epoch": 0.31,
2862
+ "learning_rate": 1.9716904473685417e-05,
2863
+ "loss": 1.5348,
2864
+ "step": 476
2865
+ },
2866
+ {
2867
+ "epoch": 0.31,
2868
+ "learning_rate": 1.9715234881851226e-05,
2869
+ "loss": 1.7724,
2870
+ "step": 477
2871
+ },
2872
+ {
2873
+ "epoch": 0.31,
2874
+ "learning_rate": 1.971356045227484e-05,
2875
+ "loss": 1.927,
2876
+ "step": 478
2877
+ },
2878
+ {
2879
+ "epoch": 0.31,
2880
+ "learning_rate": 1.971188118579004e-05,
2881
+ "loss": 1.8668,
2882
+ "step": 479
2883
+ },
2884
+ {
2885
+ "epoch": 0.31,
2886
+ "learning_rate": 1.9710197083233044e-05,
2887
+ "loss": 1.8976,
2888
+ "step": 480
2889
+ },
2890
+ {
2891
+ "epoch": 0.31,
2892
+ "learning_rate": 1.9708508145442443e-05,
2893
+ "loss": 1.7757,
2894
+ "step": 481
2895
+ },
2896
+ {
2897
+ "epoch": 0.31,
2898
+ "learning_rate": 1.970681437325925e-05,
2899
+ "loss": 1.8585,
2900
+ "step": 482
2901
+ },
2902
+ {
2903
+ "epoch": 0.32,
2904
+ "learning_rate": 1.9705115767526894e-05,
2905
+ "loss": 1.7761,
2906
+ "step": 483
2907
+ },
2908
+ {
2909
+ "epoch": 0.32,
2910
+ "learning_rate": 1.97034123290912e-05,
2911
+ "loss": 1.7709,
2912
+ "step": 484
2913
+ },
2914
+ {
2915
+ "epoch": 0.32,
2916
+ "learning_rate": 1.97017040588004e-05,
2917
+ "loss": 1.6896,
2918
+ "step": 485
2919
+ },
2920
+ {
2921
+ "epoch": 0.32,
2922
+ "learning_rate": 1.9699990957505136e-05,
2923
+ "loss": 1.7458,
2924
+ "step": 486
2925
+ },
2926
+ {
2927
+ "epoch": 0.32,
2928
+ "learning_rate": 1.9698273026058454e-05,
2929
+ "loss": 1.7141,
2930
+ "step": 487
2931
+ },
2932
+ {
2933
+ "epoch": 0.32,
2934
+ "learning_rate": 1.9696550265315805e-05,
2935
+ "loss": 1.6869,
2936
+ "step": 488
2937
+ },
2938
+ {
2939
+ "epoch": 0.32,
2940
+ "learning_rate": 1.9694822676135045e-05,
2941
+ "loss": 1.7167,
2942
+ "step": 489
2943
+ },
2944
+ {
2945
+ "epoch": 0.32,
2946
+ "learning_rate": 1.9693090259376436e-05,
2947
+ "loss": 1.8046,
2948
+ "step": 490
2949
+ },
2950
+ {
2951
+ "epoch": 0.32,
2952
+ "learning_rate": 1.9691353015902638e-05,
2953
+ "loss": 1.9046,
2954
+ "step": 491
2955
+ },
2956
+ {
2957
+ "epoch": 0.32,
2958
+ "learning_rate": 1.9689610946578725e-05,
2959
+ "loss": 1.5962,
2960
+ "step": 492
2961
+ },
2962
+ {
2963
+ "epoch": 0.32,
2964
+ "learning_rate": 1.968786405227216e-05,
2965
+ "loss": 1.7309,
2966
+ "step": 493
2967
+ },
2968
+ {
2969
+ "epoch": 0.32,
2970
+ "learning_rate": 1.9686112333852826e-05,
2971
+ "loss": 1.6692,
2972
+ "step": 494
2973
+ },
2974
+ {
2975
+ "epoch": 0.32,
2976
+ "learning_rate": 1.968435579219299e-05,
2977
+ "loss": 1.6645,
2978
+ "step": 495
2979
+ },
2980
+ {
2981
+ "epoch": 0.32,
2982
+ "learning_rate": 1.968259442816733e-05,
2983
+ "loss": 1.9673,
2984
+ "step": 496
2985
+ },
2986
+ {
2987
+ "epoch": 0.32,
2988
+ "learning_rate": 1.968082824265293e-05,
2989
+ "loss": 1.8449,
2990
+ "step": 497
2991
+ },
2992
+ {
2993
+ "epoch": 0.33,
2994
+ "learning_rate": 1.9679057236529266e-05,
2995
+ "loss": 1.4464,
2996
+ "step": 498
2997
+ },
2998
+ {
2999
+ "epoch": 0.33,
3000
+ "learning_rate": 1.9677281410678216e-05,
3001
+ "loss": 1.6464,
3002
+ "step": 499
3003
+ },
3004
+ {
3005
+ "epoch": 0.33,
3006
+ "learning_rate": 1.9675500765984066e-05,
3007
+ "loss": 1.6744,
3008
+ "step": 500
3009
+ }
3010
+ ],
3011
+ "max_steps": 4590,
3012
+ "num_train_epochs": 3,
3013
+ "total_flos": 5.83550496627753e+16,
3014
+ "trial_name": null,
3015
+ "trial_params": null
3016
+ }
checkpoint-500/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4df894649adb3ab0936fc0591fa74c9be713740610268e9b0f1d0141762a1e86
3
+ size 3707
config.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "decapoda-research/llama-7b-hf",
3
+ "architectures": [
4
+ "LLaMAForCausalLM"
5
+ ],
6
+ "bos_token_id": 0,
7
+ "eos_token_id": 1,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 4096,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 11008,
12
+ "max_sequence_length": 2048,
13
+ "model_type": "llama",
14
+ "num_attention_heads": 32,
15
+ "num_hidden_layers": 32,
16
+ "pad_token_id": -1,
17
+ "rms_norm_eps": 1e-06,
18
+ "tie_word_embeddings": false,
19
+ "torch_dtype": "float32",
20
+ "transformers_version": "4.27.0.dev0",
21
+ "use_cache": true,
22
+ "vocab_size": 32001
23
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "</s>",
3
+ "eos_token": "</s>",
4
+ "pad_token": "[PAD]",
5
+ "unk_token": "</s>"
6
+ }
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "",
3
+ "eos_token": "",
4
+ "model_max_length": 1024,
5
+ "padding_side": "right",
6
+ "special_tokens_map_file": "/home/ubuntu/.cache/huggingface/hub/models--decapoda-research--llama-7b-hf/snapshots/5f98eefcc80e437ef68d457ad7bf167c2c6a1348/special_tokens_map.json",
7
+ "tokenizer_class": "LLaMATokenizer",
8
+ "unk_token": ""
9
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4df894649adb3ab0936fc0591fa74c9be713740610268e9b0f1d0141762a1e86
3
+ size 3707