Model save
Browse files- README.md +77 -0
- trainer_log.jsonl +36 -0
README.md
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: gemma
|
3 |
+
library_name: peft
|
4 |
+
tags:
|
5 |
+
- trl
|
6 |
+
- dpo
|
7 |
+
- llama-factory
|
8 |
+
- generated_from_trainer
|
9 |
+
base_model: google/gemma-7b-it
|
10 |
+
model-index:
|
11 |
+
- name: Gemma-7B-It-ORPO-SALT
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# Gemma-7B-It-ORPO-SALT
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [google/gemma-7b-it](https://huggingface.co/google/gemma-7b-it) on the None dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 1.2657
|
23 |
+
- Rewards/chosen: -0.1198
|
24 |
+
- Rewards/rejected: -0.1438
|
25 |
+
- Rewards/accuracies: 0.5700
|
26 |
+
- Rewards/margins: 0.0239
|
27 |
+
- Logps/rejected: -1.4377
|
28 |
+
- Logps/chosen: -1.1983
|
29 |
+
- Logits/rejected: 253.9599
|
30 |
+
- Logits/chosen: 253.6037
|
31 |
+
- Sft Loss: 1.1983
|
32 |
+
- Odds Ratio Loss: 0.6746
|
33 |
+
|
34 |
+
## Model description
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Intended uses & limitations
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Training and evaluation data
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training procedure
|
47 |
+
|
48 |
+
### Training hyperparameters
|
49 |
+
|
50 |
+
The following hyperparameters were used during training:
|
51 |
+
- learning_rate: 5e-06
|
52 |
+
- train_batch_size: 2
|
53 |
+
- eval_batch_size: 2
|
54 |
+
- seed: 42
|
55 |
+
- gradient_accumulation_steps: 8
|
56 |
+
- total_train_batch_size: 16
|
57 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
58 |
+
- lr_scheduler_type: cosine
|
59 |
+
- lr_scheduler_warmup_steps: 0.1
|
60 |
+
- num_epochs: 3.0
|
61 |
+
|
62 |
+
### Training results
|
63 |
+
|
64 |
+
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | Sft Loss | Odds Ratio Loss |
|
65 |
+
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|:--------:|:---------------:|
|
66 |
+
| 1.374 | 0.8082 | 500 | 1.3436 | -0.1276 | -0.1503 | 0.5673 | 0.0227 | -1.5033 | -1.2762 | 249.9064 | 249.6123 | 1.2762 | 0.6738 |
|
67 |
+
| 1.1628 | 1.6165 | 1000 | 1.2833 | -0.1215 | -0.1446 | 0.5618 | 0.0231 | -1.4461 | -1.2153 | 253.1810 | 252.8272 | 1.2153 | 0.6796 |
|
68 |
+
| 1.1874 | 2.4247 | 1500 | 1.2657 | -0.1198 | -0.1438 | 0.5700 | 0.0239 | -1.4377 | -1.1983 | 253.9599 | 253.6037 | 1.1983 | 0.6746 |
|
69 |
+
|
70 |
+
|
71 |
+
### Framework versions
|
72 |
+
|
73 |
+
- PEFT 0.10.0
|
74 |
+
- Transformers 4.40.1
|
75 |
+
- Pytorch 2.3.0
|
76 |
+
- Datasets 2.19.0
|
77 |
+
- Tokenizers 0.19.1
|
trainer_log.jsonl
CHANGED
@@ -151,3 +151,39 @@
|
|
151 |
{"current_steps": 1490, "total_steps": 1854, "loss": 1.3291, "accuracy": 0.5625, "learning_rate": 4.607082849092523e-07, "epoch": 2.40856738735098, "percentage": 80.37, "elapsed_time": "5:22:35", "remaining_time": "1:18:48"}
|
152 |
{"current_steps": 1500, "total_steps": 1854, "loss": 1.1874, "accuracy": 0.5249999761581421, "learning_rate": 4.3649635614901405e-07, "epoch": 2.4247322691452817, "percentage": 80.91, "elapsed_time": "5:24:41", "remaining_time": "1:16:37"}
|
153 |
{"current_steps": 1500, "total_steps": 1854, "eval_loss": 1.265723466873169, "epoch": 2.4247322691452817, "percentage": 80.91, "elapsed_time": "5:28:22", "remaining_time": "1:17:29"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
{"current_steps": 1490, "total_steps": 1854, "loss": 1.3291, "accuracy": 0.5625, "learning_rate": 4.607082849092523e-07, "epoch": 2.40856738735098, "percentage": 80.37, "elapsed_time": "5:22:35", "remaining_time": "1:18:48"}
|
152 |
{"current_steps": 1500, "total_steps": 1854, "loss": 1.1874, "accuracy": 0.5249999761581421, "learning_rate": 4.3649635614901405e-07, "epoch": 2.4247322691452817, "percentage": 80.91, "elapsed_time": "5:24:41", "remaining_time": "1:16:37"}
|
153 |
{"current_steps": 1500, "total_steps": 1854, "eval_loss": 1.265723466873169, "epoch": 2.4247322691452817, "percentage": 80.91, "elapsed_time": "5:28:22", "remaining_time": "1:17:29"}
|
154 |
+
{"current_steps": 1510, "total_steps": 1854, "loss": 1.2445, "accuracy": 0.581250011920929, "learning_rate": 4.128769732701973e-07, "epoch": 2.4408971509395836, "percentage": 81.45, "elapsed_time": "5:30:28", "remaining_time": "1:15:17"}
|
155 |
+
{"current_steps": 1520, "total_steps": 1854, "loss": 1.2744, "accuracy": 0.5874999761581421, "learning_rate": 3.8985691870233046e-07, "epoch": 2.4570620327338855, "percentage": 81.98, "elapsed_time": "5:32:32", "remaining_time": "1:13:04"}
|
156 |
+
{"current_steps": 1530, "total_steps": 1854, "loss": 1.2551, "accuracy": 0.543749988079071, "learning_rate": 3.6744280277467904e-07, "epoch": 2.4732269145281873, "percentage": 82.52, "elapsed_time": "5:34:33", "remaining_time": "1:10:50"}
|
157 |
+
{"current_steps": 1540, "total_steps": 1854, "loss": 1.1295, "accuracy": 0.6312500238418579, "learning_rate": 3.456410618180503e-07, "epoch": 2.489391796322489, "percentage": 83.06, "elapsed_time": "5:36:40", "remaining_time": "1:08:38"}
|
158 |
+
{"current_steps": 1550, "total_steps": 1854, "loss": 1.1805, "accuracy": 0.6187499761581421, "learning_rate": 3.244579563165753e-07, "epoch": 2.5055566781167915, "percentage": 83.6, "elapsed_time": "5:38:41", "remaining_time": "1:06:25"}
|
159 |
+
{"current_steps": 1560, "total_steps": 1854, "loss": 1.2954, "accuracy": 0.550000011920929, "learning_rate": 3.038995691099697e-07, "epoch": 2.521721559911093, "percentage": 84.14, "elapsed_time": "5:40:39", "remaining_time": "1:04:12"}
|
160 |
+
{"current_steps": 1570, "total_steps": 1854, "loss": 1.306, "accuracy": 0.5687500238418579, "learning_rate": 2.839718036468192e-07, "epoch": 2.5378864417053952, "percentage": 84.68, "elapsed_time": "5:42:46", "remaining_time": "1:02:00"}
|
161 |
+
{"current_steps": 1580, "total_steps": 1854, "loss": 1.255, "accuracy": 0.550000011920929, "learning_rate": 2.646803822893723e-07, "epoch": 2.5540513234996967, "percentage": 85.22, "elapsed_time": "5:44:53", "remaining_time": "0:59:48"}
|
162 |
+
{"current_steps": 1590, "total_steps": 1854, "loss": 1.2319, "accuracy": 0.59375, "learning_rate": 2.460308446703341e-07, "epoch": 2.570216205293999, "percentage": 85.76, "elapsed_time": "5:46:57", "remaining_time": "0:57:36"}
|
163 |
+
{"current_steps": 1600, "total_steps": 1854, "loss": 1.1551, "accuracy": 0.6312500238418579, "learning_rate": 2.2802854610213143e-07, "epoch": 2.5863810870883004, "percentage": 86.3, "elapsed_time": "5:48:59", "remaining_time": "0:55:24"}
|
164 |
+
{"current_steps": 1610, "total_steps": 1854, "loss": 1.2644, "accuracy": 0.637499988079071, "learning_rate": 2.106786560391072e-07, "epoch": 2.6025459688826027, "percentage": 86.84, "elapsed_time": "5:50:59", "remaining_time": "0:53:11"}
|
165 |
+
{"current_steps": 1620, "total_steps": 1854, "loss": 1.2124, "accuracy": 0.5375000238418579, "learning_rate": 1.9398615659308255e-07, "epoch": 2.6187108506769046, "percentage": 87.38, "elapsed_time": "5:53:06", "remaining_time": "0:51:00"}
|
166 |
+
{"current_steps": 1630, "total_steps": 1854, "loss": 1.2372, "accuracy": 0.6000000238418579, "learning_rate": 1.7795584110272184e-07, "epoch": 2.6348757324712064, "percentage": 87.92, "elapsed_time": "5:55:21", "remaining_time": "0:48:50"}
|
167 |
+
{"current_steps": 1640, "total_steps": 1854, "loss": 1.2329, "accuracy": 0.574999988079071, "learning_rate": 1.6259231275709636e-07, "epoch": 2.6510406142655083, "percentage": 88.46, "elapsed_time": "5:57:32", "remaining_time": "0:46:39"}
|
168 |
+
{"current_steps": 1650, "total_steps": 1854, "loss": 1.2199, "accuracy": 0.581250011920929, "learning_rate": 1.478999832738548e-07, "epoch": 2.66720549605981, "percentage": 89.0, "elapsed_time": "5:59:31", "remaining_time": "0:44:27"}
|
169 |
+
{"current_steps": 1660, "total_steps": 1854, "loss": 1.1846, "accuracy": 0.581250011920929, "learning_rate": 1.338830716323769e-07, "epoch": 2.683370377854112, "percentage": 89.54, "elapsed_time": "6:01:43", "remaining_time": "0:42:16"}
|
170 |
+
{"current_steps": 1670, "total_steps": 1854, "loss": 1.157, "accuracy": 0.637499988079071, "learning_rate": 1.205456028622723e-07, "epoch": 2.699535259648414, "percentage": 90.08, "elapsed_time": "6:03:41", "remaining_time": "0:40:04"}
|
171 |
+
{"current_steps": 1680, "total_steps": 1854, "loss": 1.2068, "accuracy": 0.637499988079071, "learning_rate": 1.0789140688756805e-07, "epoch": 2.7157001414427158, "percentage": 90.61, "elapsed_time": "6:05:45", "remaining_time": "0:37:52"}
|
172 |
+
{"current_steps": 1690, "total_steps": 1854, "loss": 1.2881, "accuracy": 0.518750011920929, "learning_rate": 9.592411742693098e-08, "epoch": 2.7318650232370176, "percentage": 91.15, "elapsed_time": "6:07:43", "remaining_time": "0:35:41"}
|
173 |
+
{"current_steps": 1700, "total_steps": 1854, "loss": 1.2219, "accuracy": 0.6000000238418579, "learning_rate": 8.464717095022168e-08, "epoch": 2.7480299050313195, "percentage": 91.69, "elapsed_time": "6:09:43", "remaining_time": "0:33:29"}
|
174 |
+
{"current_steps": 1710, "total_steps": 1854, "loss": 1.278, "accuracy": 0.512499988079071, "learning_rate": 7.406380569169841e-08, "epoch": 2.7641947868256214, "percentage": 92.23, "elapsed_time": "6:11:48", "remaining_time": "0:31:18"}
|
175 |
+
{"current_steps": 1720, "total_steps": 1854, "loss": 1.2084, "accuracy": 0.5687500238418579, "learning_rate": 6.417706072013808e-08, "epoch": 2.7803596686199232, "percentage": 92.77, "elapsed_time": "6:13:54", "remaining_time": "0:29:07"}
|
176 |
+
{"current_steps": 1730, "total_steps": 1854, "loss": 1.2795, "accuracy": 0.574999988079071, "learning_rate": 5.498977506615294e-08, "epoch": 2.796524550414225, "percentage": 93.31, "elapsed_time": "6:16:05", "remaining_time": "0:26:57"}
|
177 |
+
{"current_steps": 1740, "total_steps": 1854, "loss": 1.2661, "accuracy": 0.5874999761581421, "learning_rate": 4.6504586906947756e-08, "epoch": 2.812689432208527, "percentage": 93.85, "elapsed_time": "6:18:14", "remaining_time": "0:24:46"}
|
178 |
+
{"current_steps": 1750, "total_steps": 1854, "loss": 1.3563, "accuracy": 0.518750011920929, "learning_rate": 3.8723932808754914e-08, "epoch": 2.828854314002829, "percentage": 94.39, "elapsed_time": "6:20:27", "remaining_time": "0:22:36"}
|
179 |
+
{"current_steps": 1760, "total_steps": 1854, "loss": 1.212, "accuracy": 0.606249988079071, "learning_rate": 3.1650047027158014e-08, "epoch": 2.8450191957971307, "percentage": 94.93, "elapsed_time": "6:22:38", "remaining_time": "0:20:26"}
|
180 |
+
{"current_steps": 1770, "total_steps": 1854, "loss": 1.1222, "accuracy": 0.625, "learning_rate": 2.5284960865517848e-08, "epoch": 2.8611840775914326, "percentage": 95.47, "elapsed_time": "6:24:49", "remaining_time": "0:18:15"}
|
181 |
+
{"current_steps": 1780, "total_steps": 1854, "loss": 1.2222, "accuracy": 0.6499999761581421, "learning_rate": 1.9630502091670388e-08, "epoch": 2.8773489593857344, "percentage": 96.01, "elapsed_time": "6:26:51", "remaining_time": "0:16:04"}
|
182 |
+
{"current_steps": 1790, "total_steps": 1854, "loss": 1.1414, "accuracy": 0.5874999761581421, "learning_rate": 1.4688294413074677e-08, "epoch": 2.8935138411800363, "percentage": 96.55, "elapsed_time": "6:28:52", "remaining_time": "0:13:54"}
|
183 |
+
{"current_steps": 1800, "total_steps": 1854, "loss": 1.2401, "accuracy": 0.512499988079071, "learning_rate": 1.0459757010556626e-08, "epoch": 2.909678722974338, "percentage": 97.09, "elapsed_time": "6:30:54", "remaining_time": "0:11:43"}
|
184 |
+
{"current_steps": 1810, "total_steps": 1854, "loss": 1.2671, "accuracy": 0.5625, "learning_rate": 6.94610413078306e-09, "epoch": 2.92584360476864, "percentage": 97.63, "elapsed_time": "6:32:55", "remaining_time": "0:09:33"}
|
185 |
+
{"current_steps": 1820, "total_steps": 1854, "loss": 1.1558, "accuracy": 0.6312500238418579, "learning_rate": 4.14834473758563e-09, "epoch": 2.942008486562942, "percentage": 98.17, "elapsed_time": "6:35:01", "remaining_time": "0:07:22"}
|
186 |
+
{"current_steps": 1830, "total_steps": 1854, "loss": 1.1841, "accuracy": 0.59375, "learning_rate": 2.067282222230349e-09, "epoch": 2.9581733683572438, "percentage": 98.71, "elapsed_time": "6:37:17", "remaining_time": "0:05:12"}
|
187 |
+
{"current_steps": 1840, "total_steps": 1854, "loss": 1.1223, "accuracy": 0.612500011920929, "learning_rate": 7.035141727212979e-10, "epoch": 2.9743382501515456, "percentage": 99.24, "elapsed_time": "6:39:12", "remaining_time": "0:03:02"}
|
188 |
+
{"current_steps": 1850, "total_steps": 1854, "loss": 1.2627, "accuracy": 0.6000000238418579, "learning_rate": 5.743220219761592e-11, "epoch": 2.9905031319458475, "percentage": 99.78, "elapsed_time": "6:41:21", "remaining_time": "0:00:52"}
|
189 |
+
{"current_steps": 1854, "total_steps": 1854, "epoch": 2.9969690846635686, "percentage": 100.0, "elapsed_time": "6:42:11", "remaining_time": "0:00:00"}
|