chchen commited on
Commit
e91c17d
·
verified ·
1 Parent(s): 2d8e16b

Model save

Browse files
Files changed (2) hide show
  1. README.md +77 -0
  2. trainer_log.jsonl +36 -0
README.md ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: gemma
3
+ library_name: peft
4
+ tags:
5
+ - trl
6
+ - dpo
7
+ - llama-factory
8
+ - generated_from_trainer
9
+ base_model: google/gemma-7b-it
10
+ model-index:
11
+ - name: Gemma-7B-It-ORPO-SALT
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # Gemma-7B-It-ORPO-SALT
19
+
20
+ This model is a fine-tuned version of [google/gemma-7b-it](https://huggingface.co/google/gemma-7b-it) on the None dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 1.2657
23
+ - Rewards/chosen: -0.1198
24
+ - Rewards/rejected: -0.1438
25
+ - Rewards/accuracies: 0.5700
26
+ - Rewards/margins: 0.0239
27
+ - Logps/rejected: -1.4377
28
+ - Logps/chosen: -1.1983
29
+ - Logits/rejected: 253.9599
30
+ - Logits/chosen: 253.6037
31
+ - Sft Loss: 1.1983
32
+ - Odds Ratio Loss: 0.6746
33
+
34
+ ## Model description
35
+
36
+ More information needed
37
+
38
+ ## Intended uses & limitations
39
+
40
+ More information needed
41
+
42
+ ## Training and evaluation data
43
+
44
+ More information needed
45
+
46
+ ## Training procedure
47
+
48
+ ### Training hyperparameters
49
+
50
+ The following hyperparameters were used during training:
51
+ - learning_rate: 5e-06
52
+ - train_batch_size: 2
53
+ - eval_batch_size: 2
54
+ - seed: 42
55
+ - gradient_accumulation_steps: 8
56
+ - total_train_batch_size: 16
57
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
58
+ - lr_scheduler_type: cosine
59
+ - lr_scheduler_warmup_steps: 0.1
60
+ - num_epochs: 3.0
61
+
62
+ ### Training results
63
+
64
+ | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | Sft Loss | Odds Ratio Loss |
65
+ |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|:--------:|:---------------:|
66
+ | 1.374 | 0.8082 | 500 | 1.3436 | -0.1276 | -0.1503 | 0.5673 | 0.0227 | -1.5033 | -1.2762 | 249.9064 | 249.6123 | 1.2762 | 0.6738 |
67
+ | 1.1628 | 1.6165 | 1000 | 1.2833 | -0.1215 | -0.1446 | 0.5618 | 0.0231 | -1.4461 | -1.2153 | 253.1810 | 252.8272 | 1.2153 | 0.6796 |
68
+ | 1.1874 | 2.4247 | 1500 | 1.2657 | -0.1198 | -0.1438 | 0.5700 | 0.0239 | -1.4377 | -1.1983 | 253.9599 | 253.6037 | 1.1983 | 0.6746 |
69
+
70
+
71
+ ### Framework versions
72
+
73
+ - PEFT 0.10.0
74
+ - Transformers 4.40.1
75
+ - Pytorch 2.3.0
76
+ - Datasets 2.19.0
77
+ - Tokenizers 0.19.1
trainer_log.jsonl CHANGED
@@ -151,3 +151,39 @@
151
  {"current_steps": 1490, "total_steps": 1854, "loss": 1.3291, "accuracy": 0.5625, "learning_rate": 4.607082849092523e-07, "epoch": 2.40856738735098, "percentage": 80.37, "elapsed_time": "5:22:35", "remaining_time": "1:18:48"}
152
  {"current_steps": 1500, "total_steps": 1854, "loss": 1.1874, "accuracy": 0.5249999761581421, "learning_rate": 4.3649635614901405e-07, "epoch": 2.4247322691452817, "percentage": 80.91, "elapsed_time": "5:24:41", "remaining_time": "1:16:37"}
153
  {"current_steps": 1500, "total_steps": 1854, "eval_loss": 1.265723466873169, "epoch": 2.4247322691452817, "percentage": 80.91, "elapsed_time": "5:28:22", "remaining_time": "1:17:29"}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
151
  {"current_steps": 1490, "total_steps": 1854, "loss": 1.3291, "accuracy": 0.5625, "learning_rate": 4.607082849092523e-07, "epoch": 2.40856738735098, "percentage": 80.37, "elapsed_time": "5:22:35", "remaining_time": "1:18:48"}
152
  {"current_steps": 1500, "total_steps": 1854, "loss": 1.1874, "accuracy": 0.5249999761581421, "learning_rate": 4.3649635614901405e-07, "epoch": 2.4247322691452817, "percentage": 80.91, "elapsed_time": "5:24:41", "remaining_time": "1:16:37"}
153
  {"current_steps": 1500, "total_steps": 1854, "eval_loss": 1.265723466873169, "epoch": 2.4247322691452817, "percentage": 80.91, "elapsed_time": "5:28:22", "remaining_time": "1:17:29"}
154
+ {"current_steps": 1510, "total_steps": 1854, "loss": 1.2445, "accuracy": 0.581250011920929, "learning_rate": 4.128769732701973e-07, "epoch": 2.4408971509395836, "percentage": 81.45, "elapsed_time": "5:30:28", "remaining_time": "1:15:17"}
155
+ {"current_steps": 1520, "total_steps": 1854, "loss": 1.2744, "accuracy": 0.5874999761581421, "learning_rate": 3.8985691870233046e-07, "epoch": 2.4570620327338855, "percentage": 81.98, "elapsed_time": "5:32:32", "remaining_time": "1:13:04"}
156
+ {"current_steps": 1530, "total_steps": 1854, "loss": 1.2551, "accuracy": 0.543749988079071, "learning_rate": 3.6744280277467904e-07, "epoch": 2.4732269145281873, "percentage": 82.52, "elapsed_time": "5:34:33", "remaining_time": "1:10:50"}
157
+ {"current_steps": 1540, "total_steps": 1854, "loss": 1.1295, "accuracy": 0.6312500238418579, "learning_rate": 3.456410618180503e-07, "epoch": 2.489391796322489, "percentage": 83.06, "elapsed_time": "5:36:40", "remaining_time": "1:08:38"}
158
+ {"current_steps": 1550, "total_steps": 1854, "loss": 1.1805, "accuracy": 0.6187499761581421, "learning_rate": 3.244579563165753e-07, "epoch": 2.5055566781167915, "percentage": 83.6, "elapsed_time": "5:38:41", "remaining_time": "1:06:25"}
159
+ {"current_steps": 1560, "total_steps": 1854, "loss": 1.2954, "accuracy": 0.550000011920929, "learning_rate": 3.038995691099697e-07, "epoch": 2.521721559911093, "percentage": 84.14, "elapsed_time": "5:40:39", "remaining_time": "1:04:12"}
160
+ {"current_steps": 1570, "total_steps": 1854, "loss": 1.306, "accuracy": 0.5687500238418579, "learning_rate": 2.839718036468192e-07, "epoch": 2.5378864417053952, "percentage": 84.68, "elapsed_time": "5:42:46", "remaining_time": "1:02:00"}
161
+ {"current_steps": 1580, "total_steps": 1854, "loss": 1.255, "accuracy": 0.550000011920929, "learning_rate": 2.646803822893723e-07, "epoch": 2.5540513234996967, "percentage": 85.22, "elapsed_time": "5:44:53", "remaining_time": "0:59:48"}
162
+ {"current_steps": 1590, "total_steps": 1854, "loss": 1.2319, "accuracy": 0.59375, "learning_rate": 2.460308446703341e-07, "epoch": 2.570216205293999, "percentage": 85.76, "elapsed_time": "5:46:57", "remaining_time": "0:57:36"}
163
+ {"current_steps": 1600, "total_steps": 1854, "loss": 1.1551, "accuracy": 0.6312500238418579, "learning_rate": 2.2802854610213143e-07, "epoch": 2.5863810870883004, "percentage": 86.3, "elapsed_time": "5:48:59", "remaining_time": "0:55:24"}
164
+ {"current_steps": 1610, "total_steps": 1854, "loss": 1.2644, "accuracy": 0.637499988079071, "learning_rate": 2.106786560391072e-07, "epoch": 2.6025459688826027, "percentage": 86.84, "elapsed_time": "5:50:59", "remaining_time": "0:53:11"}
165
+ {"current_steps": 1620, "total_steps": 1854, "loss": 1.2124, "accuracy": 0.5375000238418579, "learning_rate": 1.9398615659308255e-07, "epoch": 2.6187108506769046, "percentage": 87.38, "elapsed_time": "5:53:06", "remaining_time": "0:51:00"}
166
+ {"current_steps": 1630, "total_steps": 1854, "loss": 1.2372, "accuracy": 0.6000000238418579, "learning_rate": 1.7795584110272184e-07, "epoch": 2.6348757324712064, "percentage": 87.92, "elapsed_time": "5:55:21", "remaining_time": "0:48:50"}
167
+ {"current_steps": 1640, "total_steps": 1854, "loss": 1.2329, "accuracy": 0.574999988079071, "learning_rate": 1.6259231275709636e-07, "epoch": 2.6510406142655083, "percentage": 88.46, "elapsed_time": "5:57:32", "remaining_time": "0:46:39"}
168
+ {"current_steps": 1650, "total_steps": 1854, "loss": 1.2199, "accuracy": 0.581250011920929, "learning_rate": 1.478999832738548e-07, "epoch": 2.66720549605981, "percentage": 89.0, "elapsed_time": "5:59:31", "remaining_time": "0:44:27"}
169
+ {"current_steps": 1660, "total_steps": 1854, "loss": 1.1846, "accuracy": 0.581250011920929, "learning_rate": 1.338830716323769e-07, "epoch": 2.683370377854112, "percentage": 89.54, "elapsed_time": "6:01:43", "remaining_time": "0:42:16"}
170
+ {"current_steps": 1670, "total_steps": 1854, "loss": 1.157, "accuracy": 0.637499988079071, "learning_rate": 1.205456028622723e-07, "epoch": 2.699535259648414, "percentage": 90.08, "elapsed_time": "6:03:41", "remaining_time": "0:40:04"}
171
+ {"current_steps": 1680, "total_steps": 1854, "loss": 1.2068, "accuracy": 0.637499988079071, "learning_rate": 1.0789140688756805e-07, "epoch": 2.7157001414427158, "percentage": 90.61, "elapsed_time": "6:05:45", "remaining_time": "0:37:52"}
172
+ {"current_steps": 1690, "total_steps": 1854, "loss": 1.2881, "accuracy": 0.518750011920929, "learning_rate": 9.592411742693098e-08, "epoch": 2.7318650232370176, "percentage": 91.15, "elapsed_time": "6:07:43", "remaining_time": "0:35:41"}
173
+ {"current_steps": 1700, "total_steps": 1854, "loss": 1.2219, "accuracy": 0.6000000238418579, "learning_rate": 8.464717095022168e-08, "epoch": 2.7480299050313195, "percentage": 91.69, "elapsed_time": "6:09:43", "remaining_time": "0:33:29"}
174
+ {"current_steps": 1710, "total_steps": 1854, "loss": 1.278, "accuracy": 0.512499988079071, "learning_rate": 7.406380569169841e-08, "epoch": 2.7641947868256214, "percentage": 92.23, "elapsed_time": "6:11:48", "remaining_time": "0:31:18"}
175
+ {"current_steps": 1720, "total_steps": 1854, "loss": 1.2084, "accuracy": 0.5687500238418579, "learning_rate": 6.417706072013808e-08, "epoch": 2.7803596686199232, "percentage": 92.77, "elapsed_time": "6:13:54", "remaining_time": "0:29:07"}
176
+ {"current_steps": 1730, "total_steps": 1854, "loss": 1.2795, "accuracy": 0.574999988079071, "learning_rate": 5.498977506615294e-08, "epoch": 2.796524550414225, "percentage": 93.31, "elapsed_time": "6:16:05", "remaining_time": "0:26:57"}
177
+ {"current_steps": 1740, "total_steps": 1854, "loss": 1.2661, "accuracy": 0.5874999761581421, "learning_rate": 4.6504586906947756e-08, "epoch": 2.812689432208527, "percentage": 93.85, "elapsed_time": "6:18:14", "remaining_time": "0:24:46"}
178
+ {"current_steps": 1750, "total_steps": 1854, "loss": 1.3563, "accuracy": 0.518750011920929, "learning_rate": 3.8723932808754914e-08, "epoch": 2.828854314002829, "percentage": 94.39, "elapsed_time": "6:20:27", "remaining_time": "0:22:36"}
179
+ {"current_steps": 1760, "total_steps": 1854, "loss": 1.212, "accuracy": 0.606249988079071, "learning_rate": 3.1650047027158014e-08, "epoch": 2.8450191957971307, "percentage": 94.93, "elapsed_time": "6:22:38", "remaining_time": "0:20:26"}
180
+ {"current_steps": 1770, "total_steps": 1854, "loss": 1.1222, "accuracy": 0.625, "learning_rate": 2.5284960865517848e-08, "epoch": 2.8611840775914326, "percentage": 95.47, "elapsed_time": "6:24:49", "remaining_time": "0:18:15"}
181
+ {"current_steps": 1780, "total_steps": 1854, "loss": 1.2222, "accuracy": 0.6499999761581421, "learning_rate": 1.9630502091670388e-08, "epoch": 2.8773489593857344, "percentage": 96.01, "elapsed_time": "6:26:51", "remaining_time": "0:16:04"}
182
+ {"current_steps": 1790, "total_steps": 1854, "loss": 1.1414, "accuracy": 0.5874999761581421, "learning_rate": 1.4688294413074677e-08, "epoch": 2.8935138411800363, "percentage": 96.55, "elapsed_time": "6:28:52", "remaining_time": "0:13:54"}
183
+ {"current_steps": 1800, "total_steps": 1854, "loss": 1.2401, "accuracy": 0.512499988079071, "learning_rate": 1.0459757010556626e-08, "epoch": 2.909678722974338, "percentage": 97.09, "elapsed_time": "6:30:54", "remaining_time": "0:11:43"}
184
+ {"current_steps": 1810, "total_steps": 1854, "loss": 1.2671, "accuracy": 0.5625, "learning_rate": 6.94610413078306e-09, "epoch": 2.92584360476864, "percentage": 97.63, "elapsed_time": "6:32:55", "remaining_time": "0:09:33"}
185
+ {"current_steps": 1820, "total_steps": 1854, "loss": 1.1558, "accuracy": 0.6312500238418579, "learning_rate": 4.14834473758563e-09, "epoch": 2.942008486562942, "percentage": 98.17, "elapsed_time": "6:35:01", "remaining_time": "0:07:22"}
186
+ {"current_steps": 1830, "total_steps": 1854, "loss": 1.1841, "accuracy": 0.59375, "learning_rate": 2.067282222230349e-09, "epoch": 2.9581733683572438, "percentage": 98.71, "elapsed_time": "6:37:17", "remaining_time": "0:05:12"}
187
+ {"current_steps": 1840, "total_steps": 1854, "loss": 1.1223, "accuracy": 0.612500011920929, "learning_rate": 7.035141727212979e-10, "epoch": 2.9743382501515456, "percentage": 99.24, "elapsed_time": "6:39:12", "remaining_time": "0:03:02"}
188
+ {"current_steps": 1850, "total_steps": 1854, "loss": 1.2627, "accuracy": 0.6000000238418579, "learning_rate": 5.743220219761592e-11, "epoch": 2.9905031319458475, "percentage": 99.78, "elapsed_time": "6:41:21", "remaining_time": "0:00:52"}
189
+ {"current_steps": 1854, "total_steps": 1854, "epoch": 2.9969690846635686, "percentage": 100.0, "elapsed_time": "6:42:11", "remaining_time": "0:00:00"}