--- license: openrail language: - de metrics: - f1 - accuracy - precision - recall pipeline_tag: token-classification tags: - recipe - cooking - entity_recognition --- Weakly supervised token classification model for German recipe texts based on bert-base-german-cased. Code available: https://github.com/chefkoch24/weak-ingredient-recognition Dataset: https://www.kaggle.com/datasets/sterby/german-recipes-dataset Recognizes the following entities: 'O': 0,
'B-INGREDIENT': 1,
'I-INGREDIENT': 2,
'B-UNIT': 3,
'I-UNIT': 4,
'B-QUANTITY': 5,
'I-QUANTITY': 6
**Training:** epochs: 2
optimizer: Adam
learning rate: 2e-5
max length: 512
recipes: 7801
The model was trained on single Geforce RTX2080 with 11GB GPU **Metrics on test set (weakly supervised)**: accuracy_token 0.9965656995773315
f1_token 0.9965656995773315
precision_token 0.9965656995773315
recall_token 0.9965656995773315