File size: 5,715 Bytes
62239c6 98829b2 a469fb3 98829b2 62239c6 98829b2 62239c6 cacf325 62239c6 1161b0b 62239c6 98829b2 62239c6 98829b2 62239c6 98829b2 62239c6 d271c8e 62239c6 98829b2 62239c6 98829b2 62239c6 4ef23e3 62239c6 1161b0b 62239c6 a469fb3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
---
library_name: transformers
license: mit
datasets:
- chenghao/sec-material-contracts-qa-splitted
language:
- en
pipeline_tag: document-question-answering
---
# Idefices2-EDGAR
Idefices2 8B fine-tuned on 800+ multi-page documents for Visual DocQA. Make sure you have the latest peft and transformers before loading the model. GPU is required for it to work properly.
Compared to the base model, it has a lower edit distance (53% improvement on micro average) on the test set.
| | Category | Idefics2-8B | Idefics2-8B-EDGAR | Δ(↑) |
|---:|:----------------------------|--------------:|--------------------:|:-------|
| 0 | agreement_date | 0.878489 | 0.0999479 | 88.62% |
| 1 | agreement_term | 0.907067 | 0.438816 | 51.62% |
| 2 | auto_renewal | 0.634946 | 0.0516129 | 91.87% |
| 3 | contract_value | 0.474438 | 0.418815 | 11.72% |
| 4 | counterparty_address | 0.771387 | 0.59835 | 22.43% |
| 5 | counterparty_name | 0.825491 | 0.633359 | 23.27% |
| 6 | counterparty_signer_name | 0.842091 | 0.480444 | 42.95% |
| 7 | counterparty_signer_title | 0.61746 | 0.496041 | 19.66% |
| 8 | effective_date | 0.903268 | 0.125641 | 86.09% |
| 9 | expiration_date | 0.88673 | 0.235197 | 73.48% |
| 10 | governing_law | 0.881037 | 0.308771 | 64.95% |
| 11 | opt_out_length | 0.431548 | 0.047619 | 88.97% |
| 12 | party_address | 0.730897 | 0.608301 | 16.77% |
| 13 | party_name | 0.726411 | 0.490194 | 32.52% |
| 14 | payment_frequency | 0.686123 | 0.373724 | 45.53% |
| 15 | payment_term | 0.854552 | 0.593333 | 30.57% |
| 16 | renewal_term | 0.92829 | 0.0595238 | 93.59% |
| 17 | termination_for_cause | 0.436 | 0.048 | 88.99% |
| 18 | termination_for_convenience | 0.628261 | 0.156522 | 75.09% |
| 19 | termination_notice_period | 0.329748 | 0.178394 | 45.90% |
| 20 | venue | 0.781417 | 0.61403 | 21.42% |
![image/png](https://cdn-uploads.huggingface.co/production/uploads/607a5b44489fc71534e91c0e/3Jc7I1Fj2J3rabos2HLyY.png)
## Model Details
### Model Description
Finetuned form [Idefics2](https://huggingface.co/docs/transformers/main/en/model_doc/idefics2).
## Uses
```python
import torch
from transformers import AutoProcessor, Idefics2ForConditionalGeneration, BitsAndBytesConfig
from datasets import load_from_disk
base_model = "HuggingFaceM4/idefics2-8b"
peft_model_id = "chenghao/idefics2-edgar"
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
bnb_4bit_compute_dtype=torch.float16
)
model = Idefics2ForConditionalGeneration.from_pretrained(
peft_model_id,
torch_dtype=torch.float16,
quantization_config=quantization_config,
)
model.eval()
processor = AutoProcessor.from_pretrained(base_model, do_image_splitting=True,
size={"longest_edge": 490, "shortest_edge": 350})
dataset = load_from_disk("local-dataset")
test_example = dataset["test"][30]
images, question, answer = test_example["images"], test_example["question"], test_example["answer"]
messages = [
{
"role": "user",
"content": [{"type": "image"} for _ in range(len(images))] + [{"type": "text", "text": question}],
},
]
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
inputs = processor(text=prompt, images=images, return_tensors="pt").to("cuda")
with torch.no_grad():
generated_ids = model.generate(**inputs, max_new_tokens=1024)
generated_texts = processor.batch_decode(generated_ids, skip_special_tokens=True)
preds = [t.split("Assistant:", 1)[-1].strip() for t in generated_texts]
print(f"""
Question: {question}
Answer: {answer}
Prediction: {preds or 'N/A'}
""")
```
## Training Details
### Training Data
[SEC Contract QA](https://huggingface.co/datasets/chenghao/sec-material-contracts-qa)
### Training Procedure
10 epochs with QLoRA. Trained with A100-80GB for about 10 hours.
```
MAX_LENGTH = 1024
USE_LORA = False
USE_QLORA = True
MAX_PAGE = 5
config = {
"max_epochs": 10,
# "val_check_interval": 0.2,
"check_val_every_n_epoch": 1,
"gradient_clip_val": 1.0,
"accumulate_grad_batches": 12,
"lr": 1e-4,
"batch_size": 2,
"precision": "16-mixed",
"seed": 42,
"warmup_steps": 50,
"result_path": "./result",
"verbose": True,
}
```
#### Preprocessing [optional]
No image splitting due to memory limit.
```python
processor = AutoProcessor.from_pretrained(
"HuggingFaceM4/idefics2-8b",
do_image_splitting=False,
size={"longest_edge": 490, "shortest_edge": 350}
)
```
#### Training Hyperparameters
```python
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
bnb_4bit_compute_dtype=torch.float16
)
model = Idefics2ForConditionalGeneration.from_pretrained(
"HuggingFaceM4/idefics2-8b",
torch_dtype=torch.float16,
quantization_config=quantization_config,
)
```
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
20% percent of the dataset.
#### Metrics
Edit Distance (nltk).
### Results
See above. |