first commit
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-1e6-1024.zip +3 -0
- ppo-LunarLander-1e6-1024/_stable_baselines3_version +1 -0
- ppo-LunarLander-1e6-1024/data +96 -0
- ppo-LunarLander-1e6-1024/policy.optimizer.pth +3 -0
- ppo-LunarLander-1e6-1024/policy.pth +3 -0
- ppo-LunarLander-1e6-1024/pytorch_variables.pth +3 -0
- ppo-LunarLander-1e6-1024/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: MLpolicy
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 241.20 +/- 32.56
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **MLpolicy** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **MLpolicy** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f11da6869d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f11da686a60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f11da686af0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f11da686b80>", "_build": "<function ActorCriticPolicy._build at 0x7f11da686c10>", "forward": "<function ActorCriticPolicy.forward at 0x7f11da686ca0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f11da686d30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f11da686dc0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f11da686e50>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f11da686ee0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f11da686f70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f11da68f040>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f11da68ccc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681758672120586669, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM0RhrwU5Ju6pDA/OsDEPjXvCpm6Q5RcuQAAgD8AAIA/2vmlvcGUED/FIno7H/B+vvzQPL3Wp7q8AAAAAAAAAAAa6SK9CkdauXXjRTuzDzM1gSEvOnagZ7oAAIA/AACAPzMPzju4loW5bdtlOFemgjOw94i3ob6FtwAAgD8AAIA/ZjCQvXFdAblCQlk7eyY2N4d8gLu6uSI2AACAPwAAAACArGq94QyEulqIUjxyGjezyMtJO4uxUrMAAIA/AACAP2Z51TzhuJ66nji6OrX/7jULNx65MNPUuQAAgD8AAIA/ABuXvBRglbq664U5b0+FNHrwnzq87Zq4AACAPwAAgD+aL/49rlWgumrtdLme2JU0Ko7Yuq9KjjgAAIA/AACAPwAIgryuhZG6PuBLO203WzhE4a861WTkuAAAgD8AAIA/msLFPTQVoD0ItuK9WeZqvvWN/bwAAWO8AAAAAAAAAABNZhU94eieujwKOzavSF8x4hOjOpNZZrUAAIA/AACAP5IojL7/MBk/e0ciPvdAor6skTS9mJlmPQAAAAAAAAAA8+/GvcPRSLpi7165W0A8thjFmLq+pIM4AACAPwAAAAAA3sE9hWu1uYjuhzeEbt0yRIX/OqYvobYAAIA/AACAP1NHcj4tR1I/e6AFvgWTg74p1zk8IP6ivQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIwhiRKLSxXkCUhpRSlIwBbJRN6AOMAXSUR0CRq2pqh11XdX2UKGgGaAloD0MIIGPuWsKnZkCUhpRSlGgVTegDaBZHQJGrioR7JGR1fZQoaAZoCWgPQwjCo40j1sthQJSGlFKUaBVN6ANoFkdAkawAHu7YkHV9lChoBmgJaA9DCFJ95xel+GRAlIaUUpRoFU3oA2gWR0CRr+sJpnHvdX2UKGgGaAloD0MI0y6mme7yZkCUhpRSlGgVTegDaBZHQJGwAguAZsN1fZQoaAZoCWgPQwjXwiy0c5JiQJSGlFKUaBVN6ANoFkdAkbqDVH4GlnV9lChoBmgJaA9DCD83NGWnmWVAlIaUUpRoFU3oA2gWR0CRvW05EMLGdX2UKGgGaAloD0MI97GC34a9YECUhpRSlGgVTegDaBZHQJHE4lAu7H11fZQoaAZoCWgPQwjo3VhQGJxjQJSGlFKUaBVN6ANoFkdAkci7CvX9SHV9lChoBmgJaA9DCLVU3o5w2GJAlIaUUpRoFU3oA2gWR0CRzAorFwT/dX2UKGgGaAloD0MITYdOz7vzXECUhpRSlGgVTegDaBZHQJHZVUPxx1h1fZQoaAZoCWgPQwiloxzMpkViQJSGlFKUaBVN6ANoFkdAke2ACOmzjXV9lChoBmgJaA9DCH46HjPQM2BAlIaUUpRoFU3oA2gWR0CR+sAsCkoGdX2UKGgGaAloD0MIOWBXk6cmY0CUhpRSlGgVTegDaBZHQJH+0QRPGhp1fZQoaAZoCWgPQwhihzHp7+1hQJSGlFKUaBVN6ANoFkdAkgXBmwqy4XV9lChoBmgJaA9DCBnG3SBaiF1AlIaUUpRoFU3oA2gWR0CSBphllK9PdX2UKGgGaAloD0MIRUdy+Q9PZkCUhpRSlGgVTegDaBZHQJIHKIP9UCJ1fZQoaAZoCWgPQwhN9WT+0c5kQJSGlFKUaBVN6ANoFkdAkgdMcABDHHV9lChoBmgJaA9DCORlTSzwKGRAlIaUUpRoFU3oA2gWR0CSB7bExZdOdX2UKGgGaAloD0MIrHE2HQFnYUCUhpRSlGgVTegDaBZHQJIKmSr5qM51fZQoaAZoCWgPQwjsia4LPxZbQJSGlFKUaBVN6ANoFkdAkgqm/BWPtHV9lChoBmgJaA9DCCxmhLeHAWBAlIaUUpRoFU3oA2gWR0CSEUULDye7dX2UKGgGaAloD0MI4zjwarlIYECUhpRSlGgVTegDaBZHQJITOSwGGEh1fZQoaAZoCWgPQwjLoNrgxJFlQJSGlFKUaBVN6ANoFkdAkhmc8xKxs3V9lChoBmgJaA9DCM9oq5JIyGRAlIaUUpRoFU3oA2gWR0CSHbxpL26DdX2UKGgGaAloD0MI34rEBDXUYkCUhpRSlGgVTegDaBZHQJIhh5kbxVh1fZQoaAZoCWgPQwj+KVWibKJlQJSGlFKUaBVN6ANoFkdAkjR5Wq94/3V9lChoBmgJaA9DCJ/MP/omFltAlIaUUpRoFU3oA2gWR0CSODOUt7KJdX2UKGgGaAloD0MIfhghPNpfYkCUhpRSlGgVTegDaBZHQJJTA6FM7EJ1fZQoaAZoCWgPQwgk7rH0oXtaQJSGlFKUaBVN6ANoFkdAkla5AyEcsHV9lChoBmgJaA9DCHxgx3+BoWFAlIaUUpRoFU3oA2gWR0CSXwmRvFWGdX2UKGgGaAloD0MIBKkUO5pRZkCUhpRSlGgVTegDaBZHQJJgEeYD1Xh1fZQoaAZoCWgPQwgdxw+VRpteQJSGlFKUaBVN6ANoFkdAkmC0eU6gd3V9lChoBmgJaA9DCMvVj03y919AlIaUUpRoFU3oA2gWR0CSYNUg0TDgdX2UKGgGaAloD0MIKJoHsEhsYUCUhpRSlGgVTegDaBZHQJJheE/Spit1fZQoaAZoCWgPQwiXkA96NttdQJSGlFKUaBVN6ANoFkdAkmZzXarWAnV9lChoBmgJaA9DCA6GOqxwPmJAlIaUUpRoFU3oA2gWR0CSZotLcsUZdX2UKGgGaAloD0MIjrCoiNPOZkCUhpRSlGgVTegDaBZHQJJwlKRMewN1fZQoaAZoCWgPQwg4SfPHtKxhQJSGlFKUaBVN6ANoFkdAknOGPcSGrXV9lChoBmgJaA9DCDLLngQ2+WBAlIaUUpRoFU3oA2gWR0CSecNh3JPqdX2UKGgGaAloD0MIkZkLXJ7+Z0CUhpRSlGgVTegDaBZHQJJ9KuMdcSp1fZQoaAZoCWgPQwitwJDVLahjQJSGlFKUaBVN6ANoFkdAkoA3rhR64XV9lChoBmgJaA9DCLXdBN80WGNAlIaUUpRoFU3oA2gWR0CSjFNKRMewdX2UKGgGaAloD0MI98d71cp2YUCUhpRSlGgVTegDaBZHQJKOeU0Nz8x1fZQoaAZoCWgPQwgv4dBbvAhkQJSGlFKUaBVN6ANoFkdAkqw7u6VdHHV9lChoBmgJaA9DCMGMKVjj3mJAlIaUUpRoFU3oA2gWR0CSsC3AEdNndX2UKGgGaAloD0MIKV/QQoJZZ0CUhpRSlGgVTegDaBZHQJK3U7fYSQJ1fZQoaAZoCWgPQwhUxOkkW4hcQJSGlFKUaBVN6ANoFkdAkrgsrupjt3V9lChoBmgJaA9DCEUsYthhwGBAlIaUUpRoFU3oA2gWR0CSuL0r9VFQdX2UKGgGaAloD0MIKsk6HN1KYECUhpRSlGgVTegDaBZHQJK42SyMUAV1fZQoaAZoCWgPQwgewvhp3N1hQJSGlFKUaBVN6ANoFkdAkrk5p8F6iXV9lChoBmgJaA9DCFQ57Sk5cUhAlIaUUpRoFUvzaBZHQJK7B6C17Y11fZQoaAZoCWgPQwgIAI49e7piQJSGlFKUaBVN6ANoFkdAkrv4cJdB0XV9lChoBmgJaA9DCIJxcOkY5mBAlIaUUpRoFU3oA2gWR0CSvAEW69TQdX2UKGgGaAloD0MIa0qyDkdGZUCUhpRSlGgVTegDaBZHQJLBzTjNpud1fZQoaAZoCWgPQwguxsA6DgpnQJSGlFKUaBVN6ANoFkdAksNvKEFnqXV9lChoBmgJaA9DCGQFvw0x3EZAlIaUUpRoFUv5aBZHQJLDljslb/x1fZQoaAZoCWgPQwi06J0KuCdRQJSGlFKUaBVNHAFoFkdAksSuX/o7m3V9lChoBmgJaA9DCORNfotODWJAlIaUUpRoFU3oA2gWR0CSyK7ZnL7odX2UKGgGaAloD0MIZLDiVGuqWkCUhpRSlGgVTegDaBZHQJLMCm0mdAh1fZQoaAZoCWgPQwiespqup6ZhQJSGlFKUaBVN6ANoFkdAks7+XE61cHV9lChoBmgJaA9DCNj1C3ZDV2RAlIaUUpRoFU3oA2gWR0CS3F16E8JVdX2UKGgGaAloD0MI/bypSAUlb0CUhpRSlGgVTeMDaBZHQJLfB5hScb11fZQoaAZoCWgPQwgD0ZMyqShgQJSGlFKUaBVN6ANoFkdAkv+J2t+1B3V9lChoBmgJaA9DCA3k2eXbS2FAlIaUUpRoFU3oA2gWR0CTCLW2w3YMdX2UKGgGaAloD0MICcbBpeO5Y0CUhpRSlGgVTegDaBZHQJMI2JEYwZh1fZQoaAZoCWgPQwjcEU4LXh1hQJSGlFKUaBVN6ANoFkdAkwleXqqwQnV9lChoBmgJaA9DCOS+1Tpxcl9AlIaUUpRoFU3oA2gWR0CTC62+fywwdX2UKGgGaAloD0MIknTN5Bv+ZECUhpRSlGgVTegDaBZHQJMM5LbpNbl1fZQoaAZoCWgPQwjbiZKQyHhjQJSGlFKUaBVN6ANoFkdAkwzx+rlvInV9lChoBmgJaA9DCLfwvFTsBmVAlIaUUpRoFU3oA2gWR0CTE/HTqjagdX2UKGgGaAloD0MIttYXCe2LYkCUhpRSlGgVTegDaBZHQJMWT8ejmCB1fZQoaAZoCWgPQwg3GVWGcQxjQJSGlFKUaBVN6ANoFkdAkxaHPNVzZHV9lChoBmgJaA9DCJFigEQT3mFAlIaUUpRoFU3oA2gWR0CTF+ro4dZJdX2UKGgGaAloD0MI7Z48LNQIYkCUhpRSlGgVTegDaBZHQJMc/FdcB2h1fZQoaAZoCWgPQwhUjV4NUDBiQJSGlFKUaBVN6ANoFkdAkyFXr6ciGHV9lChoBmgJaA9DCL0Yyon2ym9AlIaUUpRoFU2gAWgWR0CTI5X1J17qdX2UKGgGaAloD0MIINWw3xMKZECUhpRSlGgVTegDaBZHQJMlTVFx4pt1fZQoaAZoCWgPQwgfSN45FIRgQJSGlFKUaBVN6ANoFkdAkzE0DEFW4nV9lChoBmgJaA9DCFbXoZqSumZAlIaUUpRoFU3oA2gWR0CTMyTl1bJPdX2UKGgGaAloD0MIN1FLc6v0YkCUhpRSlGgVTegDaBZHQJNSWSQo1DV1fZQoaAZoCWgPQwiSrpl8MxViQJSGlFKUaBVN6ANoFkdAk2AuZkTYd3V9lChoBmgJaA9DCEUqjC0Eml1AlIaUUpRoFU3oA2gWR0CTYTlJHy3DdX2UKGgGaAloD0MIWd5VDxjDbkCUhpRSlGgVTbECaBZHQJNiSWLP2PF1fZQoaAZoCWgPQwgkJqjhW6RjQJSGlFKUaBVN6ANoFkdAk2QMtK7I1nV9lChoBmgJaA9DCH/5ZMVwvGZAlIaUUpRoFU3oA2gWR0CTZWEZzgdfdX2UKGgGaAloD0MIEr9iDZfbY0CUhpRSlGgVTegDaBZHQJNlcrqdH2B1fZQoaAZoCWgPQwhSmWIOggZfQJSGlFKUaBVN6ANoFkdAk20mmHgxanV9lChoBmgJaA9DCKXcfY6PimFAlIaUUpRoFU3oA2gWR0CTbyb8m8dxdX2UKGgGaAloD0MIGF+0xwugYUCUhpRSlGgVTegDaBZHQJNvVpsXSBt1fZQoaAZoCWgPQwjtKqT8pAJjQJSGlFKUaBVN6ANoFkdAk3Ck9U0el3V9lChoBmgJaA9DCEHxY8xdGUVAlIaUUpRoFUvbaBZHQJNxGuzQeFN1fZQoaAZoCWgPQwiKy/EKxCxhQJSGlFKUaBVN6ANoFkdAk3fBSgoPTXV9lChoBmgJaA9DCF3F4jeFWmVAlIaUUpRoFU3oA2gWR0CTeWVMEidKdX2UKGgGaAloD0MI6lil9MyfYkCUhpRSlGgVTegDaBZHQJN6pJUYKpl1fZQoaAZoCWgPQwgUCDvFqjlAQJSGlFKUaBVL9mgWR0CTfRM495hSdX2UKGgGaAloD0MIcobijjdtR0CUhpRSlGgVTQgBaBZHQJN/HDjzZpV1fZQoaAZoCWgPQwhhxD4BFItjQJSGlFKUaBVN6ANoFkdAk4Tl4gRsdnV9lChoBmgJaA9DCGoWaHdIx01AlIaUUpRoFU0JAWgWR0CThkNxVAAydX2UKGgGaAloD0MI0ZSdftAZYUCUhpRSlGgVTegDaBZHQJOGew/xDst1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
ppo-LunarLander-1e6-1024.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ca55976c7773eaac23b55b2f48ab90ff4544c108ce6b7462b0ced20cf14b17fd
|
3 |
+
size 147391
|
ppo-LunarLander-1e6-1024/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
ppo-LunarLander-1e6-1024/data
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f11da6869d0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f11da686a60>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f11da686af0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f11da686b80>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f11da686c10>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f11da686ca0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f11da686d30>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f11da686dc0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f11da686e50>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f11da686ee0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f11da686f70>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f11da68f040>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f11da68ccc0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1681758672120586669,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"lr_schedule": {
|
33 |
+
":type:": "<class 'function'>",
|
34 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
35 |
+
},
|
36 |
+
"_last_obs": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM0RhrwU5Ju6pDA/OsDEPjXvCpm6Q5RcuQAAgD8AAIA/2vmlvcGUED/FIno7H/B+vvzQPL3Wp7q8AAAAAAAAAAAa6SK9CkdauXXjRTuzDzM1gSEvOnagZ7oAAIA/AACAPzMPzju4loW5bdtlOFemgjOw94i3ob6FtwAAgD8AAIA/ZjCQvXFdAblCQlk7eyY2N4d8gLu6uSI2AACAPwAAAACArGq94QyEulqIUjxyGjezyMtJO4uxUrMAAIA/AACAP2Z51TzhuJ66nji6OrX/7jULNx65MNPUuQAAgD8AAIA/ABuXvBRglbq664U5b0+FNHrwnzq87Zq4AACAPwAAgD+aL/49rlWgumrtdLme2JU0Ko7Yuq9KjjgAAIA/AACAPwAIgryuhZG6PuBLO203WzhE4a861WTkuAAAgD8AAIA/msLFPTQVoD0ItuK9WeZqvvWN/bwAAWO8AAAAAAAAAABNZhU94eieujwKOzavSF8x4hOjOpNZZrUAAIA/AACAP5IojL7/MBk/e0ciPvdAor6skTS9mJlmPQAAAAAAAAAA8+/GvcPRSLpi7165W0A8thjFmLq+pIM4AACAPwAAAAAA3sE9hWu1uYjuhzeEbt0yRIX/OqYvobYAAIA/AACAP1NHcj4tR1I/e6AFvgWTg74p1zk8IP6ivQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_episode_starts": {
|
41 |
+
":type:": "<class 'numpy.ndarray'>",
|
42 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
43 |
+
},
|
44 |
+
"_last_original_obs": null,
|
45 |
+
"_episode_num": 0,
|
46 |
+
"use_sde": false,
|
47 |
+
"sde_sample_freq": -1,
|
48 |
+
"_current_progress_remaining": -0.015808000000000044,
|
49 |
+
"_stats_window_size": 100,
|
50 |
+
"ep_info_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIwhiRKLSxXkCUhpRSlIwBbJRN6AOMAXSUR0CRq2pqh11XdX2UKGgGaAloD0MIIGPuWsKnZkCUhpRSlGgVTegDaBZHQJGrioR7JGR1fZQoaAZoCWgPQwjCo40j1sthQJSGlFKUaBVN6ANoFkdAkawAHu7YkHV9lChoBmgJaA9DCFJ95xel+GRAlIaUUpRoFU3oA2gWR0CRr+sJpnHvdX2UKGgGaAloD0MI0y6mme7yZkCUhpRSlGgVTegDaBZHQJGwAguAZsN1fZQoaAZoCWgPQwjXwiy0c5JiQJSGlFKUaBVN6ANoFkdAkbqDVH4GlnV9lChoBmgJaA9DCD83NGWnmWVAlIaUUpRoFU3oA2gWR0CRvW05EMLGdX2UKGgGaAloD0MI97GC34a9YECUhpRSlGgVTegDaBZHQJHE4lAu7H11fZQoaAZoCWgPQwjo3VhQGJxjQJSGlFKUaBVN6ANoFkdAkci7CvX9SHV9lChoBmgJaA9DCLVU3o5w2GJAlIaUUpRoFU3oA2gWR0CRzAorFwT/dX2UKGgGaAloD0MITYdOz7vzXECUhpRSlGgVTegDaBZHQJHZVUPxx1h1fZQoaAZoCWgPQwiloxzMpkViQJSGlFKUaBVN6ANoFkdAke2ACOmzjXV9lChoBmgJaA9DCH46HjPQM2BAlIaUUpRoFU3oA2gWR0CR+sAsCkoGdX2UKGgGaAloD0MIOWBXk6cmY0CUhpRSlGgVTegDaBZHQJH+0QRPGhp1fZQoaAZoCWgPQwhihzHp7+1hQJSGlFKUaBVN6ANoFkdAkgXBmwqy4XV9lChoBmgJaA9DCBnG3SBaiF1AlIaUUpRoFU3oA2gWR0CSBphllK9PdX2UKGgGaAloD0MIRUdy+Q9PZkCUhpRSlGgVTegDaBZHQJIHKIP9UCJ1fZQoaAZoCWgPQwhN9WT+0c5kQJSGlFKUaBVN6ANoFkdAkgdMcABDHHV9lChoBmgJaA9DCORlTSzwKGRAlIaUUpRoFU3oA2gWR0CSB7bExZdOdX2UKGgGaAloD0MIrHE2HQFnYUCUhpRSlGgVTegDaBZHQJIKmSr5qM51fZQoaAZoCWgPQwjsia4LPxZbQJSGlFKUaBVN6ANoFkdAkgqm/BWPtHV9lChoBmgJaA9DCCxmhLeHAWBAlIaUUpRoFU3oA2gWR0CSEUULDye7dX2UKGgGaAloD0MI4zjwarlIYECUhpRSlGgVTegDaBZHQJITOSwGGEh1fZQoaAZoCWgPQwjLoNrgxJFlQJSGlFKUaBVN6ANoFkdAkhmc8xKxs3V9lChoBmgJaA9DCM9oq5JIyGRAlIaUUpRoFU3oA2gWR0CSHbxpL26DdX2UKGgGaAloD0MI34rEBDXUYkCUhpRSlGgVTegDaBZHQJIhh5kbxVh1fZQoaAZoCWgPQwj+KVWibKJlQJSGlFKUaBVN6ANoFkdAkjR5Wq94/3V9lChoBmgJaA9DCJ/MP/omFltAlIaUUpRoFU3oA2gWR0CSODOUt7KJdX2UKGgGaAloD0MIfhghPNpfYkCUhpRSlGgVTegDaBZHQJJTA6FM7EJ1fZQoaAZoCWgPQwgk7rH0oXtaQJSGlFKUaBVN6ANoFkdAkla5AyEcsHV9lChoBmgJaA9DCHxgx3+BoWFAlIaUUpRoFU3oA2gWR0CSXwmRvFWGdX2UKGgGaAloD0MIBKkUO5pRZkCUhpRSlGgVTegDaBZHQJJgEeYD1Xh1fZQoaAZoCWgPQwgdxw+VRpteQJSGlFKUaBVN6ANoFkdAkmC0eU6gd3V9lChoBmgJaA9DCMvVj03y919AlIaUUpRoFU3oA2gWR0CSYNUg0TDgdX2UKGgGaAloD0MIKJoHsEhsYUCUhpRSlGgVTegDaBZHQJJheE/Spit1fZQoaAZoCWgPQwiXkA96NttdQJSGlFKUaBVN6ANoFkdAkmZzXarWAnV9lChoBmgJaA9DCA6GOqxwPmJAlIaUUpRoFU3oA2gWR0CSZotLcsUZdX2UKGgGaAloD0MIjrCoiNPOZkCUhpRSlGgVTegDaBZHQJJwlKRMewN1fZQoaAZoCWgPQwg4SfPHtKxhQJSGlFKUaBVN6ANoFkdAknOGPcSGrXV9lChoBmgJaA9DCDLLngQ2+WBAlIaUUpRoFU3oA2gWR0CSecNh3JPqdX2UKGgGaAloD0MIkZkLXJ7+Z0CUhpRSlGgVTegDaBZHQJJ9KuMdcSp1fZQoaAZoCWgPQwitwJDVLahjQJSGlFKUaBVN6ANoFkdAkoA3rhR64XV9lChoBmgJaA9DCLXdBN80WGNAlIaUUpRoFU3oA2gWR0CSjFNKRMewdX2UKGgGaAloD0MI98d71cp2YUCUhpRSlGgVTegDaBZHQJKOeU0Nz8x1fZQoaAZoCWgPQwgv4dBbvAhkQJSGlFKUaBVN6ANoFkdAkqw7u6VdHHV9lChoBmgJaA9DCMGMKVjj3mJAlIaUUpRoFU3oA2gWR0CSsC3AEdNndX2UKGgGaAloD0MIKV/QQoJZZ0CUhpRSlGgVTegDaBZHQJK3U7fYSQJ1fZQoaAZoCWgPQwhUxOkkW4hcQJSGlFKUaBVN6ANoFkdAkrgsrupjt3V9lChoBmgJaA9DCEUsYthhwGBAlIaUUpRoFU3oA2gWR0CSuL0r9VFQdX2UKGgGaAloD0MIKsk6HN1KYECUhpRSlGgVTegDaBZHQJK42SyMUAV1fZQoaAZoCWgPQwgewvhp3N1hQJSGlFKUaBVN6ANoFkdAkrk5p8F6iXV9lChoBmgJaA9DCFQ57Sk5cUhAlIaUUpRoFUvzaBZHQJK7B6C17Y11fZQoaAZoCWgPQwgIAI49e7piQJSGlFKUaBVN6ANoFkdAkrv4cJdB0XV9lChoBmgJaA9DCIJxcOkY5mBAlIaUUpRoFU3oA2gWR0CSvAEW69TQdX2UKGgGaAloD0MIa0qyDkdGZUCUhpRSlGgVTegDaBZHQJLBzTjNpud1fZQoaAZoCWgPQwguxsA6DgpnQJSGlFKUaBVN6ANoFkdAksNvKEFnqXV9lChoBmgJaA9DCGQFvw0x3EZAlIaUUpRoFUv5aBZHQJLDljslb/x1fZQoaAZoCWgPQwi06J0KuCdRQJSGlFKUaBVNHAFoFkdAksSuX/o7m3V9lChoBmgJaA9DCORNfotODWJAlIaUUpRoFU3oA2gWR0CSyK7ZnL7odX2UKGgGaAloD0MIZLDiVGuqWkCUhpRSlGgVTegDaBZHQJLMCm0mdAh1fZQoaAZoCWgPQwiespqup6ZhQJSGlFKUaBVN6ANoFkdAks7+XE61cHV9lChoBmgJaA9DCNj1C3ZDV2RAlIaUUpRoFU3oA2gWR0CS3F16E8JVdX2UKGgGaAloD0MI/bypSAUlb0CUhpRSlGgVTeMDaBZHQJLfB5hScb11fZQoaAZoCWgPQwgD0ZMyqShgQJSGlFKUaBVN6ANoFkdAkv+J2t+1B3V9lChoBmgJaA9DCA3k2eXbS2FAlIaUUpRoFU3oA2gWR0CTCLW2w3YMdX2UKGgGaAloD0MICcbBpeO5Y0CUhpRSlGgVTegDaBZHQJMI2JEYwZh1fZQoaAZoCWgPQwjcEU4LXh1hQJSGlFKUaBVN6ANoFkdAkwleXqqwQnV9lChoBmgJaA9DCOS+1Tpxcl9AlIaUUpRoFU3oA2gWR0CTC62+fywwdX2UKGgGaAloD0MIknTN5Bv+ZECUhpRSlGgVTegDaBZHQJMM5LbpNbl1fZQoaAZoCWgPQwjbiZKQyHhjQJSGlFKUaBVN6ANoFkdAkwzx+rlvInV9lChoBmgJaA9DCLfwvFTsBmVAlIaUUpRoFU3oA2gWR0CTE/HTqjagdX2UKGgGaAloD0MIttYXCe2LYkCUhpRSlGgVTegDaBZHQJMWT8ejmCB1fZQoaAZoCWgPQwg3GVWGcQxjQJSGlFKUaBVN6ANoFkdAkxaHPNVzZHV9lChoBmgJaA9DCJFigEQT3mFAlIaUUpRoFU3oA2gWR0CTF+ro4dZJdX2UKGgGaAloD0MI7Z48LNQIYkCUhpRSlGgVTegDaBZHQJMc/FdcB2h1fZQoaAZoCWgPQwhUjV4NUDBiQJSGlFKUaBVN6ANoFkdAkyFXr6ciGHV9lChoBmgJaA9DCL0Yyon2ym9AlIaUUpRoFU2gAWgWR0CTI5X1J17qdX2UKGgGaAloD0MIINWw3xMKZECUhpRSlGgVTegDaBZHQJMlTVFx4pt1fZQoaAZoCWgPQwgfSN45FIRgQJSGlFKUaBVN6ANoFkdAkzE0DEFW4nV9lChoBmgJaA9DCFbXoZqSumZAlIaUUpRoFU3oA2gWR0CTMyTl1bJPdX2UKGgGaAloD0MIN1FLc6v0YkCUhpRSlGgVTegDaBZHQJNSWSQo1DV1fZQoaAZoCWgPQwiSrpl8MxViQJSGlFKUaBVN6ANoFkdAk2AuZkTYd3V9lChoBmgJaA9DCEUqjC0Eml1AlIaUUpRoFU3oA2gWR0CTYTlJHy3DdX2UKGgGaAloD0MIWd5VDxjDbkCUhpRSlGgVTbECaBZHQJNiSWLP2PF1fZQoaAZoCWgPQwgkJqjhW6RjQJSGlFKUaBVN6ANoFkdAk2QMtK7I1nV9lChoBmgJaA9DCH/5ZMVwvGZAlIaUUpRoFU3oA2gWR0CTZWEZzgdfdX2UKGgGaAloD0MIEr9iDZfbY0CUhpRSlGgVTegDaBZHQJNlcrqdH2B1fZQoaAZoCWgPQwhSmWIOggZfQJSGlFKUaBVN6ANoFkdAk20mmHgxanV9lChoBmgJaA9DCKXcfY6PimFAlIaUUpRoFU3oA2gWR0CTbyb8m8dxdX2UKGgGaAloD0MIGF+0xwugYUCUhpRSlGgVTegDaBZHQJNvVpsXSBt1fZQoaAZoCWgPQwjtKqT8pAJjQJSGlFKUaBVN6ANoFkdAk3Ck9U0el3V9lChoBmgJaA9DCEHxY8xdGUVAlIaUUpRoFUvbaBZHQJNxGuzQeFN1fZQoaAZoCWgPQwiKy/EKxCxhQJSGlFKUaBVN6ANoFkdAk3fBSgoPTXV9lChoBmgJaA9DCF3F4jeFWmVAlIaUUpRoFU3oA2gWR0CTeWVMEidKdX2UKGgGaAloD0MI6lil9MyfYkCUhpRSlGgVTegDaBZHQJN6pJUYKpl1fZQoaAZoCWgPQwgUCDvFqjlAQJSGlFKUaBVL9mgWR0CTfRM495hSdX2UKGgGaAloD0MIcobijjdtR0CUhpRSlGgVTQgBaBZHQJN/HDjzZpV1fZQoaAZoCWgPQwhhxD4BFItjQJSGlFKUaBVN6ANoFkdAk4Tl4gRsdnV9lChoBmgJaA9DCGoWaHdIx01AlIaUUpRoFU0JAWgWR0CThkNxVAAydX2UKGgGaAloD0MI0ZSdftAZYUCUhpRSlGgVTegDaBZHQJOGew/xDst1ZS4="
|
53 |
+
},
|
54 |
+
"ep_success_buffer": {
|
55 |
+
":type:": "<class 'collections.deque'>",
|
56 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
57 |
+
},
|
58 |
+
"_n_updates": 248,
|
59 |
+
"observation_space": {
|
60 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
61 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
62 |
+
"dtype": "float32",
|
63 |
+
"_shape": [
|
64 |
+
8
|
65 |
+
],
|
66 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
67 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
68 |
+
"bounded_below": "[False False False False False False False False]",
|
69 |
+
"bounded_above": "[False False False False False False False False]",
|
70 |
+
"_np_random": null
|
71 |
+
},
|
72 |
+
"action_space": {
|
73 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
74 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
75 |
+
"n": 4,
|
76 |
+
"_shape": [],
|
77 |
+
"dtype": "int64",
|
78 |
+
"_np_random": null
|
79 |
+
},
|
80 |
+
"n_envs": 16,
|
81 |
+
"n_steps": 1024,
|
82 |
+
"gamma": 0.999,
|
83 |
+
"gae_lambda": 0.98,
|
84 |
+
"ent_coef": 0.01,
|
85 |
+
"vf_coef": 0.5,
|
86 |
+
"max_grad_norm": 0.5,
|
87 |
+
"batch_size": 64,
|
88 |
+
"n_epochs": 4,
|
89 |
+
"clip_range": {
|
90 |
+
":type:": "<class 'function'>",
|
91 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
92 |
+
},
|
93 |
+
"clip_range_vf": null,
|
94 |
+
"normalize_advantage": true,
|
95 |
+
"target_kl": null
|
96 |
+
}
|
ppo-LunarLander-1e6-1024/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:200d828c3b47b36848ad7963bd27f40ebeabb008747399a3dcd96b88e4608e9a
|
3 |
+
size 87929
|
ppo-LunarLander-1e6-1024/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:69f5cd2d8d72070eac1006b448433bb7015f984f74ba8e968cb4aeaf33166221
|
3 |
+
size 43329
|
ppo-LunarLander-1e6-1024/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-1e6-1024/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (166 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 241.20423173954023, "std_reward": 32.559499032590566, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-17T19:54:37.707241"}
|