Training completed!
Browse files
README.md
CHANGED
@@ -23,10 +23,10 @@ model-index:
|
|
23 |
metrics:
|
24 |
- name: Accuracy
|
25 |
type: accuracy
|
26 |
-
value: 0.
|
27 |
- name: F1
|
28 |
type: f1
|
29 |
-
value: 0.
|
30 |
---
|
31 |
|
32 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -36,9 +36,9 @@ should probably proofread and complete it, then remove this comment. -->
|
|
36 |
|
37 |
This model is a fine-tuned version of [dslim/distilbert-NER](https://huggingface.co/dslim/distilbert-NER) on the conll2012_ontonotesv5 dataset.
|
38 |
It achieves the following results on the evaluation set:
|
39 |
-
- Loss: 0.
|
40 |
-
- Accuracy: 0.
|
41 |
-
- F1: 0.
|
42 |
|
43 |
## Model description
|
44 |
|
@@ -69,9 +69,9 @@ The following hyperparameters were used during training:
|
|
69 |
|
70 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|
71 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
|
76 |
|
77 |
### Framework versions
|
|
|
23 |
metrics:
|
24 |
- name: Accuracy
|
25 |
type: accuracy
|
26 |
+
value: 0.867816091954023
|
27 |
- name: F1
|
28 |
type: f1
|
29 |
+
value: 0.4862665310274669
|
30 |
---
|
31 |
|
32 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
36 |
|
37 |
This model is a fine-tuned version of [dslim/distilbert-NER](https://huggingface.co/dslim/distilbert-NER) on the conll2012_ontonotesv5 dataset.
|
38 |
It achieves the following results on the evaluation set:
|
39 |
+
- Loss: 0.5043
|
40 |
+
- Accuracy: 0.8678
|
41 |
+
- F1: 0.4863
|
42 |
|
43 |
## Model description
|
44 |
|
|
|
69 |
|
70 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|
71 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
|
72 |
+
| 0.9019 | 1.0 | 61 | 0.6286 | 0.8406 | 0.4223 |
|
73 |
+
| 0.5594 | 2.0 | 122 | 0.5302 | 0.8605 | 0.4567 |
|
74 |
+
| 0.4537 | 3.0 | 183 | 0.5043 | 0.8678 | 0.4863 |
|
75 |
|
76 |
|
77 |
### Framework versions
|