chineidu commited on
Commit
256cc90
1 Parent(s): 071afa6

Training completed!

Browse files
Files changed (1) hide show
  1. README.md +8 -8
README.md CHANGED
@@ -23,10 +23,10 @@ model-index:
23
  metrics:
24
  - name: Accuracy
25
  type: accuracy
26
- value: 0.886927374301676
27
  - name: F1
28
  type: f1
29
- value: 0.48622047244094485
30
  ---
31
 
32
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -36,9 +36,9 @@ should probably proofread and complete it, then remove this comment. -->
36
 
37
  This model is a fine-tuned version of [dslim/distilbert-NER](https://huggingface.co/dslim/distilbert-NER) on the conll2012_ontonotesv5 dataset.
38
  It achieves the following results on the evaluation set:
39
- - Loss: 0.4199
40
- - Accuracy: 0.8869
41
- - F1: 0.4862
42
 
43
  ## Model description
44
 
@@ -69,9 +69,9 @@ The following hyperparameters were used during training:
69
 
70
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
71
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
72
- | 0.7537 | 1.0 | 81 | 0.5239 | 0.8635 | 0.4186 |
73
- | 0.4601 | 2.0 | 162 | 0.4479 | 0.88 | 0.4790 |
74
- | 0.3613 | 3.0 | 243 | 0.4199 | 0.8869 | 0.4862 |
75
 
76
 
77
  ### Framework versions
 
23
  metrics:
24
  - name: Accuracy
25
  type: accuracy
26
+ value: 0.867816091954023
27
  - name: F1
28
  type: f1
29
+ value: 0.4862665310274669
30
  ---
31
 
32
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
36
 
37
  This model is a fine-tuned version of [dslim/distilbert-NER](https://huggingface.co/dslim/distilbert-NER) on the conll2012_ontonotesv5 dataset.
38
  It achieves the following results on the evaluation set:
39
+ - Loss: 0.5043
40
+ - Accuracy: 0.8678
41
+ - F1: 0.4863
42
 
43
  ## Model description
44
 
 
69
 
70
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
71
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
72
+ | 0.9019 | 1.0 | 61 | 0.6286 | 0.8406 | 0.4223 |
73
+ | 0.5594 | 2.0 | 122 | 0.5302 | 0.8605 | 0.4567 |
74
+ | 0.4537 | 3.0 | 183 | 0.5043 | 0.8678 | 0.4863 |
75
 
76
 
77
  ### Framework versions