|
--- |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
base_model: google/pegasus-newsroom |
|
model-index: |
|
- name: pegasus-newsroom-rewriter |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# pegasus-newsroom-rewriter |
|
|
|
This model is a fine-tuned version of [google/pegasus-newsroom](https://huggingface.co/google/pegasus-newsroom) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.3424 |
|
- Rouge1: 46.6856 |
|
- Rouge2: 31.6377 |
|
- Rougel: 33.2741 |
|
- Rougelsum: 44.5003 |
|
- Gen Len: 126.58 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 4 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| |
|
| No log | 1.0 | 450 | 1.4020 | 47.0593 | 32.2065 | 33.9168 | 44.901 | 126.32 | |
|
| 1.9944 | 2.0 | 900 | 1.3567 | 46.2635 | 30.9959 | 32.933 | 44.1659 | 126.48 | |
|
| 1.6511 | 3.0 | 1350 | 1.3449 | 46.1544 | 30.7257 | 32.693 | 43.9977 | 126.4 | |
|
| 1.5951 | 4.0 | 1800 | 1.3424 | 46.6856 | 31.6377 | 33.2741 | 44.5003 | 126.58 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.17.0 |
|
- Pytorch 1.10.0+cu111 |
|
- Datasets 2.0.0 |
|
- Tokenizers 0.11.6 |
|
|