{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a209833e5c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1735391630388517588, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE0sjL2OBJE9a5McPjmOab5IenE7kqocPQAAAAAAAAAAANqRvCnMNbyaBHK8DpWbPIpJlr1uSX89AACAPwAAgD+ayQg7j6NLvCl3Rjt8Chc9U1StPQBI8L0AAIA/AACAPwACj70sCrA+IiXJPdKQU77FJlE9EY3LPQAAAAAAAAAA5la0PaC4hT9hmyM+0E+qvgHkAz61Aeg9AAAAAAAAAADgFEe+WStWPvazLD5WW76+SSoyvd6D2rsAAAAAAAAAAObR2D2x48I9dKGFvJf3f75JVI+8ZBitvAAAAAAAAAAAADgfPeyBpz+Aako+uViwvj7HxD32OSA+AAAAAAAAAADNCjy9TqWJvH7tfb3/kjw8rj3tPXXjFr0AAIA/AACAP52YkD4O+44/uonZPbdIsb7XDYA+6GIyvgAAAAAAAAAAzUprvCl/CrwrtmU8gf+EPFWSfL3LeV09AACAPwAAgD9zaYC9w0EkP8HDDj1rr3a+6radPMJjrTwAAAAAAAAAAGbukD1hR3o+33WWvZcnAr5m1Zc9xyocvQAAAAAAAAAAgEoovbYANLw7XC4++uwFvk/XiL3q1ra+AACAPwAAgD+a4Kc9FPeGP94Snz23eoy+kVjIPfvVMLwAAAAAAAAAAKCZTz5C+8s+NjduvonUj77yl9u8SFMJPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGy39Riw0O6MAWyUTTUBjAF0lEdAlSr7oB7u2XV9lChoBkdAbVC0BOpKjGgHTR0BaAhHQJUrCxIJ7cB1fZQoaAZHQHFeiP6sQupoB00HAWgIR0CVLKKvFFUidX2UKGgGR0BwE9srNGExaAdNFwFoCEdAlS0QjhUBGXV9lChoBkdAbw7WMju8b2gHTRYBaAhHQJUtNYYBNmF1fZQoaAZHQHG/xm9QGfRoB01DAWgIR0CVLT6F/QSjdX2UKGgGR0Bwej3UQTVUaAdNPQFoCEdAlS2sIAwPAnV9lChoBkdAcEsLCemNzmgHTRsBaAhHQJUttvhqCYl1fZQoaAZHQHGtn+dbxExoB00WAWgIR0CVLtVn27FsdX2UKGgGR0Byu5ng5zYFaAdNHgFoCEdAlS7mecx0uHV9lChoBkdAcxoQyAQQMGgHTQQBaAhHQJUvg7kn1Fp1fZQoaAZHQHKSjGHYYixoB00oAWgIR0CVL5gOSW7fdX2UKGgGR0Bq0yhN/OMVaAdNSQFoCEdAlS/b8iwB53V9lChoBkdAb6dog3cYZWgHTRQBaAhHQJUxXst03fh1fZQoaAZHQG4cSR8twrFoB00yAWgIR0CVMXUVBUrDdX2UKGgGR0BgubjR2KVIaAdN6ANoCEdAlTM/PX05EXV9lChoBkdAcQkg00m+kGgHTSsBaAhHQJU0RVvMr3F1fZQoaAZHQG3PckdFOO9oB00ZAWgIR0CVNVxbB42TdX2UKGgGR0BwPOr7wazeaAdNUAFoCEdAlTWb8FY+0XV9lChoBkdAcDi1s+FDfGgHTRUBaAhHQJU1zhm5Dqp1fZQoaAZHQHCIXG4qgAZoB00pAWgIR0CVNluV5a/zdX2UKGgGR0BypLtBv73xaAdNNQFoCEdAlTbuwC8vmHV9lChoBkdAbw6Cjk+5fGgHTTIBaAhHQJU3Rrl/6O51fZQoaAZHQHEkEZrHlwNoB0v8aAhHQJU3jAUL2Ht1fZQoaAZHQHGag2ETQE9oB00dAWgIR0CVN+E6DGtIdX2UKGgGR0Bxq61PWQOnaAdNWAFoCEdAlThqqwQlKXV9lChoBkdAcEtsS00FbGgHTRwBaAhHQJU40Z3s5XF1fZQoaAZHQHDwgOe8PFxoB00uAWgIR0CVOQhq0tyxdX2UKGgGR0Bx2Sz8gpz+aAdNZwFoCEdAlTnZPqLS/nV9lChoBkdAbicQ7tAs1GgHTRoBaAhHQJU6eHtWuHN1fZQoaAZHQHIbK3uuzQhoB00MAWgIR0CVO70Sh8IBdX2UKGgGR0BylOAhB7eEaAdNWQFoCEdAlTxCP+4smXV9lChoBkdAbWlCBwuM/GgHTScBaAhHQJU9gVN5+ph1fZQoaAZHQGxwJIUahpRoB00RAWgIR0CVPb9DQZ4wdX2UKGgGR0Bx3KHk92X+aAdNNAFoCEdAlT9aPjn3c3V9lChoBkdAcnlxO+IuXmgHTTQBaAhHQJU/5+CsfaJ1fZQoaAZHQG/YzlkpZwJoB00PAWgIR0CVP+iHIp6QdX2UKGgGR0BxBbXe3x4IaAdNMgFoCEdAlUBm0NSZSnV9lChoBkdAcS3bAUL2H2gHTTMBaAhHQJVAxfgJkXl1fZQoaAZHQG4X4b0e2eBoB009AWgIR0CVQbH93r2QdX2UKGgGR0Bx8dvVEuxsaAdNiQFoCEdAlUHg7HQyAXV9lChoBkdAb8BvVEuxr2gHTSQBaAhHQJVB8VrRBu51fZQoaAZHQHGU1EuxrzpoB01FAWgIR0CVQnVUuL75dX2UKGgGR0Bv+4pBomG/aAdNFgFoCEdAlUKd5+pfhXV9lChoBkdAcPHjSG8Em2gHTXABaAhHQJVEWpEQXhx1fZQoaAZHQHBT4IrvsqtoB00gAWgIR0CVRLH/95yEdX2UKGgGR0Bu4pYYBNmEaAdNHQFoCEdAlUUZyp71I3V9lChoBkdAcA4pgkTpPmgHTRoBaAhHQJVaNXzUZvV1fZQoaAZHQHN4t4JNTLpoB00dAWgIR0CVXI9Zid8RdX2UKGgGR0BxfaMDOkckaAdNdwFoCEdAlV1Zk9U0enV9lChoBkdAcYZC53C9AWgHTUIBaAhHQJVdY/C66J91fZQoaAZHQG1LaKcd5ptoB00oAWgIR0CVXf3BpHqedX2UKGgGR0Bx5JijL0SRaAdNUQFoCEdAlV52d3B55nV9lChoBkdAbUiI2OyVwGgHTREBaAhHQJVegigTRIB1fZQoaAZHQHKeoBeXzDpoB00QAWgIR0CVXxbmlqJudX2UKGgGR0ByfW8K5TZQaAdNHQFoCEdAlV+n8fmtAHV9lChoBkdAcLChpxm03WgHTTECaAhHQJVgMUypJf91fZQoaAZHQGuYjHwPRRdoB015AWgIR0CVYDo/iYLLdX2UKGgGR0ByLy3AmAskaAdNVQFoCEdAlWCQGSpzcXV9lChoBkdAbT8d7v5P/WgHTSYBaAhHQJVho3dbgTB1fZQoaAZHQHErzk+5e7doB00zAWgIR0CVYlsHB1s+dX2UKGgGR0BxbbU+cH4XaAdNogFoCEdAlWKOBczIm3V9lChoBkdAcm7dmxt52WgHTV8BaAhHQJVj9syi22J1fZQoaAZHQHC1e9OARTVoB007AWgIR0CVZDOoo/iYdX2UKGgGR0Bxl1DJEH+qaAdNFAFoCEdAlWWbi6xxDXV9lChoBkdAckyfR/mT1WgHTS4BaAhHQJVlzvuw5eZ1fZQoaAZHQHLtwDNhVlxoB00dAWgIR0CVZe+x4Y78dX2UKGgGR0Bxt1/wy6+WaAdNBQFoCEdAlWa75AQg93V9lChoBkdAbqn4i5d4V2gHTVYBaAhHQJVoU1VHWjJ1fZQoaAZHQHA8HXyy2QZoB01MAWgIR0CVaHuxrzoVdX2UKGgGR0Bus4vlEJBxaAdNGQFoCEdAlWiVLeyiVXV9lChoBkdAcZ4dNnGsFWgHTVIBaAhHQJVotRaX8fp1fZQoaAZHQHCt2JSBK+VoB00TAWgIR0CVaMk8zQ/pdX2UKGgGR0Bxg0WdmQKbaAdL92gIR0CVabxjawljdX2UKGgGR0BwtKGxlg+haAdNRgFoCEdAlWnUQTVUdnV9lChoBkdAcLsdmQKa5WgHTRkBaAhHQJVp/qqwQlN1fZQoaAZHQHJcmGdqcmVoB01iAWgIR0CVahzV+Zw5dX2UKGgGR0BsMtXmvGIbaAdNDAFoCEdAlWpwCbMHKXV9lChoBkdAbkVSNwR5DGgHTRMBaAhHQJVrzEsJ6Y51fZQoaAZHQHHWQvxpcopoB00rAWgIR0CVbLC9AX2vdX2UKGgGR0By5CcAiml7aAdNAgFoCEdAlW0E8zQ/o3V9lChoBkdAcK9lANXo1WgHTSABaAhHQJVuAvkBCD51fZQoaAZHQHGb2aUiY9hoB00MAWgIR0CVbjAood+5dX2UKGgGR0BzYBtcfNiZaAdNVQFoCEdAlW9NEw35vnV9lChoBkdAcRlCwKSgXmgHTQkBaAhHQJVvzL9uP3l1fZQoaAZHQHAlsW43FUBoB00WAWgIR0CVcFmozeoDdX2UKGgGR0BwvAMAmzBzaAdNCgFoCEdAlXGXuNPxhHV9lChoBkdAcBzX05EMLGgHTRMBaAhHQJVxr6k69011fZQoaAZHQHIkFdC3PRloB00cAWgIR0CVceQbMotudX2UKGgGR0By/NmRNh3JaAdNRQFoCEdAlXIMYht+C3V9lChoBkdAcET6zVtoBmgHTVABaAhHQJVyEZiuuA91fZQoaAZHQG+FFpGnXNFoB01vAWgIR0CVcs4FzMibdX2UKGgGR0ByLYr9VFQVaAdNQQFoCEdAlXNIHs1KoXV9lChoBkdAcEWvexfOU2gHTTQBaAhHQJVzUH9m6Gx1fZQoaAZHQBYr+xW1c+toB0vuaAhHQJV0GCNCJGh1fZQoaAZHQHBikzKs+3ZoB00aAWgIR0CVdQGC7K7qdX2UKGgGR0Btg8Iw/PgOaAdNWAFoCEdAlXXfzFuNxXV9lChoBkdAcDTNuLrHEWgHS/xoCEdAlXa6OtGNJnV9lChoBkdAce1sbNr0rmgHTSQBaAhHQJV21HRTjvN1fZQoaAZHQG0hGtITXatoB01AAWgIR0CVd3vCuU2UdWUu"}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}