Add ONNX models for OpenCV DNN module
Browse files- .gitattributes +5 -0
- testspace/images/dog.jpg +0 -0
- testspace/models/model from here.txt +27 -0
- testspace/models/yolov10/coco.names +80 -0
- testspace/models/yolov10/yolov10b.onnx +3 -0
- testspace/models/yolov10/yolov10l.onnx +3 -0
- testspace/models/yolov10/yolov10m.onnx +3 -0
- testspace/models/yolov10/yolov10n.onnx +3 -0
- testspace/models/yolov10/yolov10s.onnx +3 -0
- testspace/models/yolov10/yolov10x.onnx +3 -0
- testspace/models/yolov4/coco.names +80 -0
- testspace/models/yolov4/yolov4.cfg +1158 -0
- testspace/models/yolov4/yolov4.weights +3 -0
- testspace/models/yolov4_csp/coco.names +80 -0
- testspace/models/yolov4_csp/yolov4-csp.cfg +1279 -0
- testspace/models/yolov4_csp/yolov4-csp.weights +3 -0
- testspace/models/yolov5/coco.names +80 -0
- testspace/models/yolov5/yolov5l.onnx +3 -0
- testspace/models/yolov5/yolov5m.onnx +3 -0
- testspace/models/yolov5/yolov5n.onnx +3 -0
- testspace/models/yolov5/yolov5s.onnx +3 -0
- testspace/models/yolov5/yolov5x.onnx +3 -0
- testspace/models/yolov6/coco.names +80 -0
- testspace/models/yolov6/yolov6l.onnx +3 -0
- testspace/models/yolov6/yolov6m.onnx +3 -0
- testspace/models/yolov6/yolov6n.onnx +3 -0
- testspace/models/yolov6/yolov6s.onnx +3 -0
- testspace/models/yolov7/coco.names +80 -0
- testspace/models/yolov7/yolov7-tiny.cfg +706 -0
- testspace/models/yolov7/yolov7-tiny.weights +3 -0
- testspace/models/yolov7/yolov7.cfg +1024 -0
- testspace/models/yolov7/yolov7.weights +3 -0
- testspace/models/yolov7/yolov7x.cfg +1152 -0
- testspace/models/yolov7/yolov7x.weights +3 -0
- testspace/models/yolov8/coco.names +80 -0
- testspace/models/yolov8/yolov8l.onnx +3 -0
- testspace/models/yolov8/yolov8m.onnx +3 -0
- testspace/models/yolov8/yolov8n.onnx +3 -0
- testspace/models/yolov8/yolov8s.onnx +3 -0
- testspace/models/yolov8/yolov8x.onnx +3 -0
- testspace/models/yolov9/coco.names +80 -0
- testspace/models/yolov9/yolov9-c-converted.onnx +3 -0
- testspace/models/yolov9/yolov9-e-converted.onnx +3 -0
- testspace/models/yolov9/yolov9-m-converted.onnx +3 -0
- testspace/models/yolov9/yolov9-s-converted.onnx +3 -0
- testspace/models/yolov9/yolov9-t-converted.onnx +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,8 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
testspace/models/yolov4_csp/yolov4-csp.weights filter=lfs diff=lfs merge=lfs -text
|
37 |
+
testspace/models/yolov4/yolov4.weights filter=lfs diff=lfs merge=lfs -text
|
38 |
+
testspace/models/yolov7/yolov7-tiny.weights filter=lfs diff=lfs merge=lfs -text
|
39 |
+
testspace/models/yolov7/yolov7.weights filter=lfs diff=lfs merge=lfs -text
|
40 |
+
testspace/models/yolov7/yolov7x.weights filter=lfs diff=lfs merge=lfs -text
|
testspace/images/dog.jpg
ADDED
testspace/models/model from here.txt
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
YOLO v4, CSP(Scaled YOLO v4) (Darknet)
|
2 |
+
https://github.com/AlexeyAB/darknet/releases/tag/yolov4
|
3 |
+
|
4 |
+
YOLO v5 (ONNX)
|
5 |
+
https://github.com/ultralytics/yolov5/releases/tag/v7.0
|
6 |
+
|
7 |
+
YOLO v6 (ONNX)
|
8 |
+
https://github.com/meituan/YOLOv6/releases/tag/0.3.0
|
9 |
+
|
10 |
+
YOLO v7 (Darknet)
|
11 |
+
https://github.com/AlexeyAB/darknet/issues/8595
|
12 |
+
|
13 |
+
YOLO v8 (ONNX, need convert)
|
14 |
+
https://huggingface.co/Ultralytics/YOLOv8
|
15 |
+
colab (Official)
|
16 |
+
https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb
|
17 |
+
|
18 |
+
YOLO v9 (ONNX, need convert)
|
19 |
+
https://github.com/WongKinYiu/yolov9
|
20 |
+
colab (I made for converting)
|
21 |
+
https://gist.github.com/whdlgp/bec49d62ddc72c9464817365c4cc7fbc
|
22 |
+
|
23 |
+
YOLOv10 (ONNX, need custom model, need convert)
|
24 |
+
https://github.com/THU-MIG/yolov10
|
25 |
+
Above not work for OpenCV 4.10.0. You need special version, https://docs.opencv.org/4.x/da/d9d/tutorial_dnn_yolo.html
|
26 |
+
colab (I made for converting from OpenCV's YOLOv10 custom version)
|
27 |
+
https://gist.github.com/whdlgp/f69b0c40728a2d75f564cb0d37715993
|
testspace/models/yolov10/coco.names
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
person
|
2 |
+
bicycle
|
3 |
+
car
|
4 |
+
motorbike
|
5 |
+
aeroplane
|
6 |
+
bus
|
7 |
+
train
|
8 |
+
truck
|
9 |
+
boat
|
10 |
+
traffic light
|
11 |
+
fire hydrant
|
12 |
+
stop sign
|
13 |
+
parking meter
|
14 |
+
bench
|
15 |
+
bird
|
16 |
+
cat
|
17 |
+
dog
|
18 |
+
horse
|
19 |
+
sheep
|
20 |
+
cow
|
21 |
+
elephant
|
22 |
+
bear
|
23 |
+
zebra
|
24 |
+
giraffe
|
25 |
+
backpack
|
26 |
+
umbrella
|
27 |
+
handbag
|
28 |
+
tie
|
29 |
+
suitcase
|
30 |
+
frisbee
|
31 |
+
skis
|
32 |
+
snowboard
|
33 |
+
sports ball
|
34 |
+
kite
|
35 |
+
baseball bat
|
36 |
+
baseball glove
|
37 |
+
skateboard
|
38 |
+
surfboard
|
39 |
+
tennis racket
|
40 |
+
bottle
|
41 |
+
wine glass
|
42 |
+
cup
|
43 |
+
fork
|
44 |
+
knife
|
45 |
+
spoon
|
46 |
+
bowl
|
47 |
+
banana
|
48 |
+
apple
|
49 |
+
sandwich
|
50 |
+
orange
|
51 |
+
broccoli
|
52 |
+
carrot
|
53 |
+
hot dog
|
54 |
+
pizza
|
55 |
+
donut
|
56 |
+
cake
|
57 |
+
chair
|
58 |
+
sofa
|
59 |
+
pottedplant
|
60 |
+
bed
|
61 |
+
diningtable
|
62 |
+
toilet
|
63 |
+
tvmonitor
|
64 |
+
laptop
|
65 |
+
mouse
|
66 |
+
remote
|
67 |
+
keyboard
|
68 |
+
cell phone
|
69 |
+
microwave
|
70 |
+
oven
|
71 |
+
toaster
|
72 |
+
sink
|
73 |
+
refrigerator
|
74 |
+
book
|
75 |
+
clock
|
76 |
+
vase
|
77 |
+
scissors
|
78 |
+
teddy bear
|
79 |
+
hair drier
|
80 |
+
toothbrush
|
testspace/models/yolov10/yolov10b.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a5bbab3a6b79316083fab1d36cd9190201e3f2108d2f7cf3afb2eb58139f663c
|
3 |
+
size 76526110
|
testspace/models/yolov10/yolov10l.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:96daa80aa2cc934d07bed1c8a1387555daf85e4f1fc8888d82050cb55b528f74
|
3 |
+
size 97769283
|
testspace/models/yolov10/yolov10m.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1ff4c4bffca37629561e45d0e8c5afed8953b21c5c7784619469ca62257e4bfe
|
3 |
+
size 61696269
|
testspace/models/yolov10/yolov10n.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1020c5ee8c51114ab16d27b6ca75b9302fe71b951c174a3218889ea42fade236
|
3 |
+
size 9430825
|
testspace/models/yolov10/yolov10s.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1f3612fa5e8dc969ca6006fd2b243780cfd36e7c4131d981af0d7705f6785c32
|
3 |
+
size 29231866
|
testspace/models/yolov10/yolov10x.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4a49f9e3d459dfa7777d12cd2197c7b7ef10f8afe94eca9cf03ef01a51916fb4
|
3 |
+
size 118192493
|
testspace/models/yolov4/coco.names
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
person
|
2 |
+
bicycle
|
3 |
+
car
|
4 |
+
motorbike
|
5 |
+
aeroplane
|
6 |
+
bus
|
7 |
+
train
|
8 |
+
truck
|
9 |
+
boat
|
10 |
+
traffic light
|
11 |
+
fire hydrant
|
12 |
+
stop sign
|
13 |
+
parking meter
|
14 |
+
bench
|
15 |
+
bird
|
16 |
+
cat
|
17 |
+
dog
|
18 |
+
horse
|
19 |
+
sheep
|
20 |
+
cow
|
21 |
+
elephant
|
22 |
+
bear
|
23 |
+
zebra
|
24 |
+
giraffe
|
25 |
+
backpack
|
26 |
+
umbrella
|
27 |
+
handbag
|
28 |
+
tie
|
29 |
+
suitcase
|
30 |
+
frisbee
|
31 |
+
skis
|
32 |
+
snowboard
|
33 |
+
sports ball
|
34 |
+
kite
|
35 |
+
baseball bat
|
36 |
+
baseball glove
|
37 |
+
skateboard
|
38 |
+
surfboard
|
39 |
+
tennis racket
|
40 |
+
bottle
|
41 |
+
wine glass
|
42 |
+
cup
|
43 |
+
fork
|
44 |
+
knife
|
45 |
+
spoon
|
46 |
+
bowl
|
47 |
+
banana
|
48 |
+
apple
|
49 |
+
sandwich
|
50 |
+
orange
|
51 |
+
broccoli
|
52 |
+
carrot
|
53 |
+
hot dog
|
54 |
+
pizza
|
55 |
+
donut
|
56 |
+
cake
|
57 |
+
chair
|
58 |
+
sofa
|
59 |
+
pottedplant
|
60 |
+
bed
|
61 |
+
diningtable
|
62 |
+
toilet
|
63 |
+
tvmonitor
|
64 |
+
laptop
|
65 |
+
mouse
|
66 |
+
remote
|
67 |
+
keyboard
|
68 |
+
cell phone
|
69 |
+
microwave
|
70 |
+
oven
|
71 |
+
toaster
|
72 |
+
sink
|
73 |
+
refrigerator
|
74 |
+
book
|
75 |
+
clock
|
76 |
+
vase
|
77 |
+
scissors
|
78 |
+
teddy bear
|
79 |
+
hair drier
|
80 |
+
toothbrush
|
testspace/models/yolov4/yolov4.cfg
ADDED
@@ -0,0 +1,1158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[net]
|
2 |
+
batch=64
|
3 |
+
subdivisions=8
|
4 |
+
# Training
|
5 |
+
#width=512
|
6 |
+
#height=512
|
7 |
+
width=608
|
8 |
+
height=608
|
9 |
+
channels=3
|
10 |
+
momentum=0.949
|
11 |
+
decay=0.0005
|
12 |
+
angle=0
|
13 |
+
saturation = 1.5
|
14 |
+
exposure = 1.5
|
15 |
+
hue=.1
|
16 |
+
|
17 |
+
learning_rate=0.0013
|
18 |
+
burn_in=1000
|
19 |
+
max_batches = 500500
|
20 |
+
policy=steps
|
21 |
+
steps=400000,450000
|
22 |
+
scales=.1,.1
|
23 |
+
|
24 |
+
#cutmix=1
|
25 |
+
mosaic=1
|
26 |
+
|
27 |
+
#:104x104 54:52x52 85:26x26 104:13x13 for 416
|
28 |
+
|
29 |
+
[convolutional]
|
30 |
+
batch_normalize=1
|
31 |
+
filters=32
|
32 |
+
size=3
|
33 |
+
stride=1
|
34 |
+
pad=1
|
35 |
+
activation=mish
|
36 |
+
|
37 |
+
# Downsample
|
38 |
+
|
39 |
+
[convolutional]
|
40 |
+
batch_normalize=1
|
41 |
+
filters=64
|
42 |
+
size=3
|
43 |
+
stride=2
|
44 |
+
pad=1
|
45 |
+
activation=mish
|
46 |
+
|
47 |
+
[convolutional]
|
48 |
+
batch_normalize=1
|
49 |
+
filters=64
|
50 |
+
size=1
|
51 |
+
stride=1
|
52 |
+
pad=1
|
53 |
+
activation=mish
|
54 |
+
|
55 |
+
[route]
|
56 |
+
layers = -2
|
57 |
+
|
58 |
+
[convolutional]
|
59 |
+
batch_normalize=1
|
60 |
+
filters=64
|
61 |
+
size=1
|
62 |
+
stride=1
|
63 |
+
pad=1
|
64 |
+
activation=mish
|
65 |
+
|
66 |
+
[convolutional]
|
67 |
+
batch_normalize=1
|
68 |
+
filters=32
|
69 |
+
size=1
|
70 |
+
stride=1
|
71 |
+
pad=1
|
72 |
+
activation=mish
|
73 |
+
|
74 |
+
[convolutional]
|
75 |
+
batch_normalize=1
|
76 |
+
filters=64
|
77 |
+
size=3
|
78 |
+
stride=1
|
79 |
+
pad=1
|
80 |
+
activation=mish
|
81 |
+
|
82 |
+
[shortcut]
|
83 |
+
from=-3
|
84 |
+
activation=linear
|
85 |
+
|
86 |
+
[convolutional]
|
87 |
+
batch_normalize=1
|
88 |
+
filters=64
|
89 |
+
size=1
|
90 |
+
stride=1
|
91 |
+
pad=1
|
92 |
+
activation=mish
|
93 |
+
|
94 |
+
[route]
|
95 |
+
layers = -1,-7
|
96 |
+
|
97 |
+
[convolutional]
|
98 |
+
batch_normalize=1
|
99 |
+
filters=64
|
100 |
+
size=1
|
101 |
+
stride=1
|
102 |
+
pad=1
|
103 |
+
activation=mish
|
104 |
+
|
105 |
+
# Downsample
|
106 |
+
|
107 |
+
[convolutional]
|
108 |
+
batch_normalize=1
|
109 |
+
filters=128
|
110 |
+
size=3
|
111 |
+
stride=2
|
112 |
+
pad=1
|
113 |
+
activation=mish
|
114 |
+
|
115 |
+
[convolutional]
|
116 |
+
batch_normalize=1
|
117 |
+
filters=64
|
118 |
+
size=1
|
119 |
+
stride=1
|
120 |
+
pad=1
|
121 |
+
activation=mish
|
122 |
+
|
123 |
+
[route]
|
124 |
+
layers = -2
|
125 |
+
|
126 |
+
[convolutional]
|
127 |
+
batch_normalize=1
|
128 |
+
filters=64
|
129 |
+
size=1
|
130 |
+
stride=1
|
131 |
+
pad=1
|
132 |
+
activation=mish
|
133 |
+
|
134 |
+
[convolutional]
|
135 |
+
batch_normalize=1
|
136 |
+
filters=64
|
137 |
+
size=1
|
138 |
+
stride=1
|
139 |
+
pad=1
|
140 |
+
activation=mish
|
141 |
+
|
142 |
+
[convolutional]
|
143 |
+
batch_normalize=1
|
144 |
+
filters=64
|
145 |
+
size=3
|
146 |
+
stride=1
|
147 |
+
pad=1
|
148 |
+
activation=mish
|
149 |
+
|
150 |
+
[shortcut]
|
151 |
+
from=-3
|
152 |
+
activation=linear
|
153 |
+
|
154 |
+
[convolutional]
|
155 |
+
batch_normalize=1
|
156 |
+
filters=64
|
157 |
+
size=1
|
158 |
+
stride=1
|
159 |
+
pad=1
|
160 |
+
activation=mish
|
161 |
+
|
162 |
+
[convolutional]
|
163 |
+
batch_normalize=1
|
164 |
+
filters=64
|
165 |
+
size=3
|
166 |
+
stride=1
|
167 |
+
pad=1
|
168 |
+
activation=mish
|
169 |
+
|
170 |
+
[shortcut]
|
171 |
+
from=-3
|
172 |
+
activation=linear
|
173 |
+
|
174 |
+
[convolutional]
|
175 |
+
batch_normalize=1
|
176 |
+
filters=64
|
177 |
+
size=1
|
178 |
+
stride=1
|
179 |
+
pad=1
|
180 |
+
activation=mish
|
181 |
+
|
182 |
+
[route]
|
183 |
+
layers = -1,-10
|
184 |
+
|
185 |
+
[convolutional]
|
186 |
+
batch_normalize=1
|
187 |
+
filters=128
|
188 |
+
size=1
|
189 |
+
stride=1
|
190 |
+
pad=1
|
191 |
+
activation=mish
|
192 |
+
|
193 |
+
# Downsample
|
194 |
+
|
195 |
+
[convolutional]
|
196 |
+
batch_normalize=1
|
197 |
+
filters=256
|
198 |
+
size=3
|
199 |
+
stride=2
|
200 |
+
pad=1
|
201 |
+
activation=mish
|
202 |
+
|
203 |
+
[convolutional]
|
204 |
+
batch_normalize=1
|
205 |
+
filters=128
|
206 |
+
size=1
|
207 |
+
stride=1
|
208 |
+
pad=1
|
209 |
+
activation=mish
|
210 |
+
|
211 |
+
[route]
|
212 |
+
layers = -2
|
213 |
+
|
214 |
+
[convolutional]
|
215 |
+
batch_normalize=1
|
216 |
+
filters=128
|
217 |
+
size=1
|
218 |
+
stride=1
|
219 |
+
pad=1
|
220 |
+
activation=mish
|
221 |
+
|
222 |
+
[convolutional]
|
223 |
+
batch_normalize=1
|
224 |
+
filters=128
|
225 |
+
size=1
|
226 |
+
stride=1
|
227 |
+
pad=1
|
228 |
+
activation=mish
|
229 |
+
|
230 |
+
[convolutional]
|
231 |
+
batch_normalize=1
|
232 |
+
filters=128
|
233 |
+
size=3
|
234 |
+
stride=1
|
235 |
+
pad=1
|
236 |
+
activation=mish
|
237 |
+
|
238 |
+
[shortcut]
|
239 |
+
from=-3
|
240 |
+
activation=linear
|
241 |
+
|
242 |
+
[convolutional]
|
243 |
+
batch_normalize=1
|
244 |
+
filters=128
|
245 |
+
size=1
|
246 |
+
stride=1
|
247 |
+
pad=1
|
248 |
+
activation=mish
|
249 |
+
|
250 |
+
[convolutional]
|
251 |
+
batch_normalize=1
|
252 |
+
filters=128
|
253 |
+
size=3
|
254 |
+
stride=1
|
255 |
+
pad=1
|
256 |
+
activation=mish
|
257 |
+
|
258 |
+
[shortcut]
|
259 |
+
from=-3
|
260 |
+
activation=linear
|
261 |
+
|
262 |
+
[convolutional]
|
263 |
+
batch_normalize=1
|
264 |
+
filters=128
|
265 |
+
size=1
|
266 |
+
stride=1
|
267 |
+
pad=1
|
268 |
+
activation=mish
|
269 |
+
|
270 |
+
[convolutional]
|
271 |
+
batch_normalize=1
|
272 |
+
filters=128
|
273 |
+
size=3
|
274 |
+
stride=1
|
275 |
+
pad=1
|
276 |
+
activation=mish
|
277 |
+
|
278 |
+
[shortcut]
|
279 |
+
from=-3
|
280 |
+
activation=linear
|
281 |
+
|
282 |
+
[convolutional]
|
283 |
+
batch_normalize=1
|
284 |
+
filters=128
|
285 |
+
size=1
|
286 |
+
stride=1
|
287 |
+
pad=1
|
288 |
+
activation=mish
|
289 |
+
|
290 |
+
[convolutional]
|
291 |
+
batch_normalize=1
|
292 |
+
filters=128
|
293 |
+
size=3
|
294 |
+
stride=1
|
295 |
+
pad=1
|
296 |
+
activation=mish
|
297 |
+
|
298 |
+
[shortcut]
|
299 |
+
from=-3
|
300 |
+
activation=linear
|
301 |
+
|
302 |
+
|
303 |
+
[convolutional]
|
304 |
+
batch_normalize=1
|
305 |
+
filters=128
|
306 |
+
size=1
|
307 |
+
stride=1
|
308 |
+
pad=1
|
309 |
+
activation=mish
|
310 |
+
|
311 |
+
[convolutional]
|
312 |
+
batch_normalize=1
|
313 |
+
filters=128
|
314 |
+
size=3
|
315 |
+
stride=1
|
316 |
+
pad=1
|
317 |
+
activation=mish
|
318 |
+
|
319 |
+
[shortcut]
|
320 |
+
from=-3
|
321 |
+
activation=linear
|
322 |
+
|
323 |
+
[convolutional]
|
324 |
+
batch_normalize=1
|
325 |
+
filters=128
|
326 |
+
size=1
|
327 |
+
stride=1
|
328 |
+
pad=1
|
329 |
+
activation=mish
|
330 |
+
|
331 |
+
[convolutional]
|
332 |
+
batch_normalize=1
|
333 |
+
filters=128
|
334 |
+
size=3
|
335 |
+
stride=1
|
336 |
+
pad=1
|
337 |
+
activation=mish
|
338 |
+
|
339 |
+
[shortcut]
|
340 |
+
from=-3
|
341 |
+
activation=linear
|
342 |
+
|
343 |
+
[convolutional]
|
344 |
+
batch_normalize=1
|
345 |
+
filters=128
|
346 |
+
size=1
|
347 |
+
stride=1
|
348 |
+
pad=1
|
349 |
+
activation=mish
|
350 |
+
|
351 |
+
[convolutional]
|
352 |
+
batch_normalize=1
|
353 |
+
filters=128
|
354 |
+
size=3
|
355 |
+
stride=1
|
356 |
+
pad=1
|
357 |
+
activation=mish
|
358 |
+
|
359 |
+
[shortcut]
|
360 |
+
from=-3
|
361 |
+
activation=linear
|
362 |
+
|
363 |
+
[convolutional]
|
364 |
+
batch_normalize=1
|
365 |
+
filters=128
|
366 |
+
size=1
|
367 |
+
stride=1
|
368 |
+
pad=1
|
369 |
+
activation=mish
|
370 |
+
|
371 |
+
[convolutional]
|
372 |
+
batch_normalize=1
|
373 |
+
filters=128
|
374 |
+
size=3
|
375 |
+
stride=1
|
376 |
+
pad=1
|
377 |
+
activation=mish
|
378 |
+
|
379 |
+
[shortcut]
|
380 |
+
from=-3
|
381 |
+
activation=linear
|
382 |
+
|
383 |
+
[convolutional]
|
384 |
+
batch_normalize=1
|
385 |
+
filters=128
|
386 |
+
size=1
|
387 |
+
stride=1
|
388 |
+
pad=1
|
389 |
+
activation=mish
|
390 |
+
|
391 |
+
[route]
|
392 |
+
layers = -1,-28
|
393 |
+
|
394 |
+
[convolutional]
|
395 |
+
batch_normalize=1
|
396 |
+
filters=256
|
397 |
+
size=1
|
398 |
+
stride=1
|
399 |
+
pad=1
|
400 |
+
activation=mish
|
401 |
+
|
402 |
+
# Downsample
|
403 |
+
|
404 |
+
[convolutional]
|
405 |
+
batch_normalize=1
|
406 |
+
filters=512
|
407 |
+
size=3
|
408 |
+
stride=2
|
409 |
+
pad=1
|
410 |
+
activation=mish
|
411 |
+
|
412 |
+
[convolutional]
|
413 |
+
batch_normalize=1
|
414 |
+
filters=256
|
415 |
+
size=1
|
416 |
+
stride=1
|
417 |
+
pad=1
|
418 |
+
activation=mish
|
419 |
+
|
420 |
+
[route]
|
421 |
+
layers = -2
|
422 |
+
|
423 |
+
[convolutional]
|
424 |
+
batch_normalize=1
|
425 |
+
filters=256
|
426 |
+
size=1
|
427 |
+
stride=1
|
428 |
+
pad=1
|
429 |
+
activation=mish
|
430 |
+
|
431 |
+
[convolutional]
|
432 |
+
batch_normalize=1
|
433 |
+
filters=256
|
434 |
+
size=1
|
435 |
+
stride=1
|
436 |
+
pad=1
|
437 |
+
activation=mish
|
438 |
+
|
439 |
+
[convolutional]
|
440 |
+
batch_normalize=1
|
441 |
+
filters=256
|
442 |
+
size=3
|
443 |
+
stride=1
|
444 |
+
pad=1
|
445 |
+
activation=mish
|
446 |
+
|
447 |
+
[shortcut]
|
448 |
+
from=-3
|
449 |
+
activation=linear
|
450 |
+
|
451 |
+
|
452 |
+
[convolutional]
|
453 |
+
batch_normalize=1
|
454 |
+
filters=256
|
455 |
+
size=1
|
456 |
+
stride=1
|
457 |
+
pad=1
|
458 |
+
activation=mish
|
459 |
+
|
460 |
+
[convolutional]
|
461 |
+
batch_normalize=1
|
462 |
+
filters=256
|
463 |
+
size=3
|
464 |
+
stride=1
|
465 |
+
pad=1
|
466 |
+
activation=mish
|
467 |
+
|
468 |
+
[shortcut]
|
469 |
+
from=-3
|
470 |
+
activation=linear
|
471 |
+
|
472 |
+
|
473 |
+
[convolutional]
|
474 |
+
batch_normalize=1
|
475 |
+
filters=256
|
476 |
+
size=1
|
477 |
+
stride=1
|
478 |
+
pad=1
|
479 |
+
activation=mish
|
480 |
+
|
481 |
+
[convolutional]
|
482 |
+
batch_normalize=1
|
483 |
+
filters=256
|
484 |
+
size=3
|
485 |
+
stride=1
|
486 |
+
pad=1
|
487 |
+
activation=mish
|
488 |
+
|
489 |
+
[shortcut]
|
490 |
+
from=-3
|
491 |
+
activation=linear
|
492 |
+
|
493 |
+
|
494 |
+
[convolutional]
|
495 |
+
batch_normalize=1
|
496 |
+
filters=256
|
497 |
+
size=1
|
498 |
+
stride=1
|
499 |
+
pad=1
|
500 |
+
activation=mish
|
501 |
+
|
502 |
+
[convolutional]
|
503 |
+
batch_normalize=1
|
504 |
+
filters=256
|
505 |
+
size=3
|
506 |
+
stride=1
|
507 |
+
pad=1
|
508 |
+
activation=mish
|
509 |
+
|
510 |
+
[shortcut]
|
511 |
+
from=-3
|
512 |
+
activation=linear
|
513 |
+
|
514 |
+
|
515 |
+
[convolutional]
|
516 |
+
batch_normalize=1
|
517 |
+
filters=256
|
518 |
+
size=1
|
519 |
+
stride=1
|
520 |
+
pad=1
|
521 |
+
activation=mish
|
522 |
+
|
523 |
+
[convolutional]
|
524 |
+
batch_normalize=1
|
525 |
+
filters=256
|
526 |
+
size=3
|
527 |
+
stride=1
|
528 |
+
pad=1
|
529 |
+
activation=mish
|
530 |
+
|
531 |
+
[shortcut]
|
532 |
+
from=-3
|
533 |
+
activation=linear
|
534 |
+
|
535 |
+
|
536 |
+
[convolutional]
|
537 |
+
batch_normalize=1
|
538 |
+
filters=256
|
539 |
+
size=1
|
540 |
+
stride=1
|
541 |
+
pad=1
|
542 |
+
activation=mish
|
543 |
+
|
544 |
+
[convolutional]
|
545 |
+
batch_normalize=1
|
546 |
+
filters=256
|
547 |
+
size=3
|
548 |
+
stride=1
|
549 |
+
pad=1
|
550 |
+
activation=mish
|
551 |
+
|
552 |
+
[shortcut]
|
553 |
+
from=-3
|
554 |
+
activation=linear
|
555 |
+
|
556 |
+
|
557 |
+
[convolutional]
|
558 |
+
batch_normalize=1
|
559 |
+
filters=256
|
560 |
+
size=1
|
561 |
+
stride=1
|
562 |
+
pad=1
|
563 |
+
activation=mish
|
564 |
+
|
565 |
+
[convolutional]
|
566 |
+
batch_normalize=1
|
567 |
+
filters=256
|
568 |
+
size=3
|
569 |
+
stride=1
|
570 |
+
pad=1
|
571 |
+
activation=mish
|
572 |
+
|
573 |
+
[shortcut]
|
574 |
+
from=-3
|
575 |
+
activation=linear
|
576 |
+
|
577 |
+
[convolutional]
|
578 |
+
batch_normalize=1
|
579 |
+
filters=256
|
580 |
+
size=1
|
581 |
+
stride=1
|
582 |
+
pad=1
|
583 |
+
activation=mish
|
584 |
+
|
585 |
+
[convolutional]
|
586 |
+
batch_normalize=1
|
587 |
+
filters=256
|
588 |
+
size=3
|
589 |
+
stride=1
|
590 |
+
pad=1
|
591 |
+
activation=mish
|
592 |
+
|
593 |
+
[shortcut]
|
594 |
+
from=-3
|
595 |
+
activation=linear
|
596 |
+
|
597 |
+
[convolutional]
|
598 |
+
batch_normalize=1
|
599 |
+
filters=256
|
600 |
+
size=1
|
601 |
+
stride=1
|
602 |
+
pad=1
|
603 |
+
activation=mish
|
604 |
+
|
605 |
+
[route]
|
606 |
+
layers = -1,-28
|
607 |
+
|
608 |
+
[convolutional]
|
609 |
+
batch_normalize=1
|
610 |
+
filters=512
|
611 |
+
size=1
|
612 |
+
stride=1
|
613 |
+
pad=1
|
614 |
+
activation=mish
|
615 |
+
|
616 |
+
# Downsample
|
617 |
+
|
618 |
+
[convolutional]
|
619 |
+
batch_normalize=1
|
620 |
+
filters=1024
|
621 |
+
size=3
|
622 |
+
stride=2
|
623 |
+
pad=1
|
624 |
+
activation=mish
|
625 |
+
|
626 |
+
[convolutional]
|
627 |
+
batch_normalize=1
|
628 |
+
filters=512
|
629 |
+
size=1
|
630 |
+
stride=1
|
631 |
+
pad=1
|
632 |
+
activation=mish
|
633 |
+
|
634 |
+
[route]
|
635 |
+
layers = -2
|
636 |
+
|
637 |
+
[convolutional]
|
638 |
+
batch_normalize=1
|
639 |
+
filters=512
|
640 |
+
size=1
|
641 |
+
stride=1
|
642 |
+
pad=1
|
643 |
+
activation=mish
|
644 |
+
|
645 |
+
[convolutional]
|
646 |
+
batch_normalize=1
|
647 |
+
filters=512
|
648 |
+
size=1
|
649 |
+
stride=1
|
650 |
+
pad=1
|
651 |
+
activation=mish
|
652 |
+
|
653 |
+
[convolutional]
|
654 |
+
batch_normalize=1
|
655 |
+
filters=512
|
656 |
+
size=3
|
657 |
+
stride=1
|
658 |
+
pad=1
|
659 |
+
activation=mish
|
660 |
+
|
661 |
+
[shortcut]
|
662 |
+
from=-3
|
663 |
+
activation=linear
|
664 |
+
|
665 |
+
[convolutional]
|
666 |
+
batch_normalize=1
|
667 |
+
filters=512
|
668 |
+
size=1
|
669 |
+
stride=1
|
670 |
+
pad=1
|
671 |
+
activation=mish
|
672 |
+
|
673 |
+
[convolutional]
|
674 |
+
batch_normalize=1
|
675 |
+
filters=512
|
676 |
+
size=3
|
677 |
+
stride=1
|
678 |
+
pad=1
|
679 |
+
activation=mish
|
680 |
+
|
681 |
+
[shortcut]
|
682 |
+
from=-3
|
683 |
+
activation=linear
|
684 |
+
|
685 |
+
[convolutional]
|
686 |
+
batch_normalize=1
|
687 |
+
filters=512
|
688 |
+
size=1
|
689 |
+
stride=1
|
690 |
+
pad=1
|
691 |
+
activation=mish
|
692 |
+
|
693 |
+
[convolutional]
|
694 |
+
batch_normalize=1
|
695 |
+
filters=512
|
696 |
+
size=3
|
697 |
+
stride=1
|
698 |
+
pad=1
|
699 |
+
activation=mish
|
700 |
+
|
701 |
+
[shortcut]
|
702 |
+
from=-3
|
703 |
+
activation=linear
|
704 |
+
|
705 |
+
[convolutional]
|
706 |
+
batch_normalize=1
|
707 |
+
filters=512
|
708 |
+
size=1
|
709 |
+
stride=1
|
710 |
+
pad=1
|
711 |
+
activation=mish
|
712 |
+
|
713 |
+
[convolutional]
|
714 |
+
batch_normalize=1
|
715 |
+
filters=512
|
716 |
+
size=3
|
717 |
+
stride=1
|
718 |
+
pad=1
|
719 |
+
activation=mish
|
720 |
+
|
721 |
+
[shortcut]
|
722 |
+
from=-3
|
723 |
+
activation=linear
|
724 |
+
|
725 |
+
[convolutional]
|
726 |
+
batch_normalize=1
|
727 |
+
filters=512
|
728 |
+
size=1
|
729 |
+
stride=1
|
730 |
+
pad=1
|
731 |
+
activation=mish
|
732 |
+
|
733 |
+
[route]
|
734 |
+
layers = -1,-16
|
735 |
+
|
736 |
+
[convolutional]
|
737 |
+
batch_normalize=1
|
738 |
+
filters=1024
|
739 |
+
size=1
|
740 |
+
stride=1
|
741 |
+
pad=1
|
742 |
+
activation=mish
|
743 |
+
|
744 |
+
##########################
|
745 |
+
|
746 |
+
[convolutional]
|
747 |
+
batch_normalize=1
|
748 |
+
filters=512
|
749 |
+
size=1
|
750 |
+
stride=1
|
751 |
+
pad=1
|
752 |
+
activation=leaky
|
753 |
+
|
754 |
+
[convolutional]
|
755 |
+
batch_normalize=1
|
756 |
+
size=3
|
757 |
+
stride=1
|
758 |
+
pad=1
|
759 |
+
filters=1024
|
760 |
+
activation=leaky
|
761 |
+
|
762 |
+
[convolutional]
|
763 |
+
batch_normalize=1
|
764 |
+
filters=512
|
765 |
+
size=1
|
766 |
+
stride=1
|
767 |
+
pad=1
|
768 |
+
activation=leaky
|
769 |
+
|
770 |
+
### SPP ###
|
771 |
+
[maxpool]
|
772 |
+
stride=1
|
773 |
+
size=5
|
774 |
+
|
775 |
+
[route]
|
776 |
+
layers=-2
|
777 |
+
|
778 |
+
[maxpool]
|
779 |
+
stride=1
|
780 |
+
size=9
|
781 |
+
|
782 |
+
[route]
|
783 |
+
layers=-4
|
784 |
+
|
785 |
+
[maxpool]
|
786 |
+
stride=1
|
787 |
+
size=13
|
788 |
+
|
789 |
+
[route]
|
790 |
+
layers=-1,-3,-5,-6
|
791 |
+
### End SPP ###
|
792 |
+
|
793 |
+
[convolutional]
|
794 |
+
batch_normalize=1
|
795 |
+
filters=512
|
796 |
+
size=1
|
797 |
+
stride=1
|
798 |
+
pad=1
|
799 |
+
activation=leaky
|
800 |
+
|
801 |
+
[convolutional]
|
802 |
+
batch_normalize=1
|
803 |
+
size=3
|
804 |
+
stride=1
|
805 |
+
pad=1
|
806 |
+
filters=1024
|
807 |
+
activation=leaky
|
808 |
+
|
809 |
+
[convolutional]
|
810 |
+
batch_normalize=1
|
811 |
+
filters=512
|
812 |
+
size=1
|
813 |
+
stride=1
|
814 |
+
pad=1
|
815 |
+
activation=leaky
|
816 |
+
|
817 |
+
[convolutional]
|
818 |
+
batch_normalize=1
|
819 |
+
filters=256
|
820 |
+
size=1
|
821 |
+
stride=1
|
822 |
+
pad=1
|
823 |
+
activation=leaky
|
824 |
+
|
825 |
+
[upsample]
|
826 |
+
stride=2
|
827 |
+
|
828 |
+
[route]
|
829 |
+
layers = 85
|
830 |
+
|
831 |
+
[convolutional]
|
832 |
+
batch_normalize=1
|
833 |
+
filters=256
|
834 |
+
size=1
|
835 |
+
stride=1
|
836 |
+
pad=1
|
837 |
+
activation=leaky
|
838 |
+
|
839 |
+
[route]
|
840 |
+
layers = -1, -3
|
841 |
+
|
842 |
+
[convolutional]
|
843 |
+
batch_normalize=1
|
844 |
+
filters=256
|
845 |
+
size=1
|
846 |
+
stride=1
|
847 |
+
pad=1
|
848 |
+
activation=leaky
|
849 |
+
|
850 |
+
[convolutional]
|
851 |
+
batch_normalize=1
|
852 |
+
size=3
|
853 |
+
stride=1
|
854 |
+
pad=1
|
855 |
+
filters=512
|
856 |
+
activation=leaky
|
857 |
+
|
858 |
+
[convolutional]
|
859 |
+
batch_normalize=1
|
860 |
+
filters=256
|
861 |
+
size=1
|
862 |
+
stride=1
|
863 |
+
pad=1
|
864 |
+
activation=leaky
|
865 |
+
|
866 |
+
[convolutional]
|
867 |
+
batch_normalize=1
|
868 |
+
size=3
|
869 |
+
stride=1
|
870 |
+
pad=1
|
871 |
+
filters=512
|
872 |
+
activation=leaky
|
873 |
+
|
874 |
+
[convolutional]
|
875 |
+
batch_normalize=1
|
876 |
+
filters=256
|
877 |
+
size=1
|
878 |
+
stride=1
|
879 |
+
pad=1
|
880 |
+
activation=leaky
|
881 |
+
|
882 |
+
[convolutional]
|
883 |
+
batch_normalize=1
|
884 |
+
filters=128
|
885 |
+
size=1
|
886 |
+
stride=1
|
887 |
+
pad=1
|
888 |
+
activation=leaky
|
889 |
+
|
890 |
+
[upsample]
|
891 |
+
stride=2
|
892 |
+
|
893 |
+
[route]
|
894 |
+
layers = 54
|
895 |
+
|
896 |
+
[convolutional]
|
897 |
+
batch_normalize=1
|
898 |
+
filters=128
|
899 |
+
size=1
|
900 |
+
stride=1
|
901 |
+
pad=1
|
902 |
+
activation=leaky
|
903 |
+
|
904 |
+
[route]
|
905 |
+
layers = -1, -3
|
906 |
+
|
907 |
+
[convolutional]
|
908 |
+
batch_normalize=1
|
909 |
+
filters=128
|
910 |
+
size=1
|
911 |
+
stride=1
|
912 |
+
pad=1
|
913 |
+
activation=leaky
|
914 |
+
|
915 |
+
[convolutional]
|
916 |
+
batch_normalize=1
|
917 |
+
size=3
|
918 |
+
stride=1
|
919 |
+
pad=1
|
920 |
+
filters=256
|
921 |
+
activation=leaky
|
922 |
+
|
923 |
+
[convolutional]
|
924 |
+
batch_normalize=1
|
925 |
+
filters=128
|
926 |
+
size=1
|
927 |
+
stride=1
|
928 |
+
pad=1
|
929 |
+
activation=leaky
|
930 |
+
|
931 |
+
[convolutional]
|
932 |
+
batch_normalize=1
|
933 |
+
size=3
|
934 |
+
stride=1
|
935 |
+
pad=1
|
936 |
+
filters=256
|
937 |
+
activation=leaky
|
938 |
+
|
939 |
+
[convolutional]
|
940 |
+
batch_normalize=1
|
941 |
+
filters=128
|
942 |
+
size=1
|
943 |
+
stride=1
|
944 |
+
pad=1
|
945 |
+
activation=leaky
|
946 |
+
|
947 |
+
##########################
|
948 |
+
|
949 |
+
[convolutional]
|
950 |
+
batch_normalize=1
|
951 |
+
size=3
|
952 |
+
stride=1
|
953 |
+
pad=1
|
954 |
+
filters=256
|
955 |
+
activation=leaky
|
956 |
+
|
957 |
+
[convolutional]
|
958 |
+
size=1
|
959 |
+
stride=1
|
960 |
+
pad=1
|
961 |
+
filters=255
|
962 |
+
activation=linear
|
963 |
+
|
964 |
+
|
965 |
+
[yolo]
|
966 |
+
mask = 0,1,2
|
967 |
+
anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
|
968 |
+
classes=80
|
969 |
+
num=9
|
970 |
+
jitter=.3
|
971 |
+
ignore_thresh = .7
|
972 |
+
truth_thresh = 1
|
973 |
+
scale_x_y = 1.2
|
974 |
+
iou_thresh=0.213
|
975 |
+
cls_normalizer=1.0
|
976 |
+
iou_normalizer=0.07
|
977 |
+
iou_loss=ciou
|
978 |
+
nms_kind=greedynms
|
979 |
+
beta_nms=0.6
|
980 |
+
max_delta=5
|
981 |
+
|
982 |
+
|
983 |
+
[route]
|
984 |
+
layers = -4
|
985 |
+
|
986 |
+
[convolutional]
|
987 |
+
batch_normalize=1
|
988 |
+
size=3
|
989 |
+
stride=2
|
990 |
+
pad=1
|
991 |
+
filters=256
|
992 |
+
activation=leaky
|
993 |
+
|
994 |
+
[route]
|
995 |
+
layers = -1, -16
|
996 |
+
|
997 |
+
[convolutional]
|
998 |
+
batch_normalize=1
|
999 |
+
filters=256
|
1000 |
+
size=1
|
1001 |
+
stride=1
|
1002 |
+
pad=1
|
1003 |
+
activation=leaky
|
1004 |
+
|
1005 |
+
[convolutional]
|
1006 |
+
batch_normalize=1
|
1007 |
+
size=3
|
1008 |
+
stride=1
|
1009 |
+
pad=1
|
1010 |
+
filters=512
|
1011 |
+
activation=leaky
|
1012 |
+
|
1013 |
+
[convolutional]
|
1014 |
+
batch_normalize=1
|
1015 |
+
filters=256
|
1016 |
+
size=1
|
1017 |
+
stride=1
|
1018 |
+
pad=1
|
1019 |
+
activation=leaky
|
1020 |
+
|
1021 |
+
[convolutional]
|
1022 |
+
batch_normalize=1
|
1023 |
+
size=3
|
1024 |
+
stride=1
|
1025 |
+
pad=1
|
1026 |
+
filters=512
|
1027 |
+
activation=leaky
|
1028 |
+
|
1029 |
+
[convolutional]
|
1030 |
+
batch_normalize=1
|
1031 |
+
filters=256
|
1032 |
+
size=1
|
1033 |
+
stride=1
|
1034 |
+
pad=1
|
1035 |
+
activation=leaky
|
1036 |
+
|
1037 |
+
[convolutional]
|
1038 |
+
batch_normalize=1
|
1039 |
+
size=3
|
1040 |
+
stride=1
|
1041 |
+
pad=1
|
1042 |
+
filters=512
|
1043 |
+
activation=leaky
|
1044 |
+
|
1045 |
+
[convolutional]
|
1046 |
+
size=1
|
1047 |
+
stride=1
|
1048 |
+
pad=1
|
1049 |
+
filters=255
|
1050 |
+
activation=linear
|
1051 |
+
|
1052 |
+
|
1053 |
+
[yolo]
|
1054 |
+
mask = 3,4,5
|
1055 |
+
anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
|
1056 |
+
classes=80
|
1057 |
+
num=9
|
1058 |
+
jitter=.3
|
1059 |
+
ignore_thresh = .7
|
1060 |
+
truth_thresh = 1
|
1061 |
+
scale_x_y = 1.1
|
1062 |
+
iou_thresh=0.213
|
1063 |
+
cls_normalizer=1.0
|
1064 |
+
iou_normalizer=0.07
|
1065 |
+
iou_loss=ciou
|
1066 |
+
nms_kind=greedynms
|
1067 |
+
beta_nms=0.6
|
1068 |
+
max_delta=5
|
1069 |
+
|
1070 |
+
|
1071 |
+
[route]
|
1072 |
+
layers = -4
|
1073 |
+
|
1074 |
+
[convolutional]
|
1075 |
+
batch_normalize=1
|
1076 |
+
size=3
|
1077 |
+
stride=2
|
1078 |
+
pad=1
|
1079 |
+
filters=512
|
1080 |
+
activation=leaky
|
1081 |
+
|
1082 |
+
[route]
|
1083 |
+
layers = -1, -37
|
1084 |
+
|
1085 |
+
[convolutional]
|
1086 |
+
batch_normalize=1
|
1087 |
+
filters=512
|
1088 |
+
size=1
|
1089 |
+
stride=1
|
1090 |
+
pad=1
|
1091 |
+
activation=leaky
|
1092 |
+
|
1093 |
+
[convolutional]
|
1094 |
+
batch_normalize=1
|
1095 |
+
size=3
|
1096 |
+
stride=1
|
1097 |
+
pad=1
|
1098 |
+
filters=1024
|
1099 |
+
activation=leaky
|
1100 |
+
|
1101 |
+
[convolutional]
|
1102 |
+
batch_normalize=1
|
1103 |
+
filters=512
|
1104 |
+
size=1
|
1105 |
+
stride=1
|
1106 |
+
pad=1
|
1107 |
+
activation=leaky
|
1108 |
+
|
1109 |
+
[convolutional]
|
1110 |
+
batch_normalize=1
|
1111 |
+
size=3
|
1112 |
+
stride=1
|
1113 |
+
pad=1
|
1114 |
+
filters=1024
|
1115 |
+
activation=leaky
|
1116 |
+
|
1117 |
+
[convolutional]
|
1118 |
+
batch_normalize=1
|
1119 |
+
filters=512
|
1120 |
+
size=1
|
1121 |
+
stride=1
|
1122 |
+
pad=1
|
1123 |
+
activation=leaky
|
1124 |
+
|
1125 |
+
[convolutional]
|
1126 |
+
batch_normalize=1
|
1127 |
+
size=3
|
1128 |
+
stride=1
|
1129 |
+
pad=1
|
1130 |
+
filters=1024
|
1131 |
+
activation=leaky
|
1132 |
+
|
1133 |
+
[convolutional]
|
1134 |
+
size=1
|
1135 |
+
stride=1
|
1136 |
+
pad=1
|
1137 |
+
filters=255
|
1138 |
+
activation=linear
|
1139 |
+
|
1140 |
+
|
1141 |
+
[yolo]
|
1142 |
+
mask = 6,7,8
|
1143 |
+
anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
|
1144 |
+
classes=80
|
1145 |
+
num=9
|
1146 |
+
jitter=.3
|
1147 |
+
ignore_thresh = .7
|
1148 |
+
truth_thresh = 1
|
1149 |
+
random=1
|
1150 |
+
scale_x_y = 1.05
|
1151 |
+
iou_thresh=0.213
|
1152 |
+
cls_normalizer=1.0
|
1153 |
+
iou_normalizer=0.07
|
1154 |
+
iou_loss=ciou
|
1155 |
+
nms_kind=greedynms
|
1156 |
+
beta_nms=0.6
|
1157 |
+
max_delta=5
|
1158 |
+
|
testspace/models/yolov4/yolov4.weights
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e8a4f6c62188738d86dc6898d82724ec0964d0eb9d2ae0f0a9d53d65d108d562
|
3 |
+
size 257717640
|
testspace/models/yolov4_csp/coco.names
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
person
|
2 |
+
bicycle
|
3 |
+
car
|
4 |
+
motorbike
|
5 |
+
aeroplane
|
6 |
+
bus
|
7 |
+
train
|
8 |
+
truck
|
9 |
+
boat
|
10 |
+
traffic light
|
11 |
+
fire hydrant
|
12 |
+
stop sign
|
13 |
+
parking meter
|
14 |
+
bench
|
15 |
+
bird
|
16 |
+
cat
|
17 |
+
dog
|
18 |
+
horse
|
19 |
+
sheep
|
20 |
+
cow
|
21 |
+
elephant
|
22 |
+
bear
|
23 |
+
zebra
|
24 |
+
giraffe
|
25 |
+
backpack
|
26 |
+
umbrella
|
27 |
+
handbag
|
28 |
+
tie
|
29 |
+
suitcase
|
30 |
+
frisbee
|
31 |
+
skis
|
32 |
+
snowboard
|
33 |
+
sports ball
|
34 |
+
kite
|
35 |
+
baseball bat
|
36 |
+
baseball glove
|
37 |
+
skateboard
|
38 |
+
surfboard
|
39 |
+
tennis racket
|
40 |
+
bottle
|
41 |
+
wine glass
|
42 |
+
cup
|
43 |
+
fork
|
44 |
+
knife
|
45 |
+
spoon
|
46 |
+
bowl
|
47 |
+
banana
|
48 |
+
apple
|
49 |
+
sandwich
|
50 |
+
orange
|
51 |
+
broccoli
|
52 |
+
carrot
|
53 |
+
hot dog
|
54 |
+
pizza
|
55 |
+
donut
|
56 |
+
cake
|
57 |
+
chair
|
58 |
+
sofa
|
59 |
+
pottedplant
|
60 |
+
bed
|
61 |
+
diningtable
|
62 |
+
toilet
|
63 |
+
tvmonitor
|
64 |
+
laptop
|
65 |
+
mouse
|
66 |
+
remote
|
67 |
+
keyboard
|
68 |
+
cell phone
|
69 |
+
microwave
|
70 |
+
oven
|
71 |
+
toaster
|
72 |
+
sink
|
73 |
+
refrigerator
|
74 |
+
book
|
75 |
+
clock
|
76 |
+
vase
|
77 |
+
scissors
|
78 |
+
teddy bear
|
79 |
+
hair drier
|
80 |
+
toothbrush
|
testspace/models/yolov4_csp/yolov4-csp.cfg
ADDED
@@ -0,0 +1,1279 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[net]
|
2 |
+
# Testing
|
3 |
+
#batch=1
|
4 |
+
#subdivisions=1
|
5 |
+
# Training
|
6 |
+
batch=64
|
7 |
+
subdivisions=8
|
8 |
+
width=512
|
9 |
+
height=512
|
10 |
+
channels=3
|
11 |
+
momentum=0.949
|
12 |
+
decay=0.0005
|
13 |
+
angle=0
|
14 |
+
saturation = 1.5
|
15 |
+
exposure = 1.5
|
16 |
+
hue=.1
|
17 |
+
|
18 |
+
learning_rate=0.001
|
19 |
+
burn_in=1000
|
20 |
+
max_batches = 500500
|
21 |
+
policy=steps
|
22 |
+
steps=400000,450000
|
23 |
+
scales=.1,.1
|
24 |
+
|
25 |
+
mosaic=1
|
26 |
+
|
27 |
+
letter_box=1
|
28 |
+
|
29 |
+
ema_alpha=0.9998
|
30 |
+
|
31 |
+
#optimized_memory=1
|
32 |
+
|
33 |
+
#23:104x104 54:52x52 85:26x26 104:13x13 for 416
|
34 |
+
|
35 |
+
|
36 |
+
|
37 |
+
[convolutional]
|
38 |
+
batch_normalize=1
|
39 |
+
filters=32
|
40 |
+
size=3
|
41 |
+
stride=1
|
42 |
+
pad=1
|
43 |
+
activation=mish
|
44 |
+
|
45 |
+
# Downsample
|
46 |
+
|
47 |
+
[convolutional]
|
48 |
+
batch_normalize=1
|
49 |
+
filters=64
|
50 |
+
size=3
|
51 |
+
stride=2
|
52 |
+
pad=1
|
53 |
+
activation=mish
|
54 |
+
|
55 |
+
#[convolutional]
|
56 |
+
#batch_normalize=1
|
57 |
+
#filters=64
|
58 |
+
#size=1
|
59 |
+
#stride=1
|
60 |
+
#pad=1
|
61 |
+
#activation=mish
|
62 |
+
|
63 |
+
#[route]
|
64 |
+
#layers = -2
|
65 |
+
|
66 |
+
#[convolutional]
|
67 |
+
#batch_normalize=1
|
68 |
+
#filters=64
|
69 |
+
#size=1
|
70 |
+
#stride=1
|
71 |
+
#pad=1
|
72 |
+
#activation=mish
|
73 |
+
|
74 |
+
[convolutional]
|
75 |
+
batch_normalize=1
|
76 |
+
filters=32
|
77 |
+
size=1
|
78 |
+
stride=1
|
79 |
+
pad=1
|
80 |
+
activation=mish
|
81 |
+
|
82 |
+
[convolutional]
|
83 |
+
batch_normalize=1
|
84 |
+
filters=64
|
85 |
+
size=3
|
86 |
+
stride=1
|
87 |
+
pad=1
|
88 |
+
activation=mish
|
89 |
+
|
90 |
+
[shortcut]
|
91 |
+
from=-3
|
92 |
+
activation=linear
|
93 |
+
|
94 |
+
#[convolutional]
|
95 |
+
#batch_normalize=1
|
96 |
+
#filters=64
|
97 |
+
#size=1
|
98 |
+
#stride=1
|
99 |
+
#pad=1
|
100 |
+
#activation=mish
|
101 |
+
|
102 |
+
#[route]
|
103 |
+
#layers = -1,-7
|
104 |
+
|
105 |
+
#[convolutional]
|
106 |
+
#batch_normalize=1
|
107 |
+
#filters=64
|
108 |
+
#size=1
|
109 |
+
#stride=1
|
110 |
+
#pad=1
|
111 |
+
#activation=mish
|
112 |
+
|
113 |
+
# Downsample
|
114 |
+
|
115 |
+
[convolutional]
|
116 |
+
batch_normalize=1
|
117 |
+
filters=128
|
118 |
+
size=3
|
119 |
+
stride=2
|
120 |
+
pad=1
|
121 |
+
activation=mish
|
122 |
+
|
123 |
+
[convolutional]
|
124 |
+
batch_normalize=1
|
125 |
+
filters=64
|
126 |
+
size=1
|
127 |
+
stride=1
|
128 |
+
pad=1
|
129 |
+
activation=mish
|
130 |
+
|
131 |
+
[route]
|
132 |
+
layers = -2
|
133 |
+
|
134 |
+
[convolutional]
|
135 |
+
batch_normalize=1
|
136 |
+
filters=64
|
137 |
+
size=1
|
138 |
+
stride=1
|
139 |
+
pad=1
|
140 |
+
activation=mish
|
141 |
+
|
142 |
+
[convolutional]
|
143 |
+
batch_normalize=1
|
144 |
+
filters=64
|
145 |
+
size=1
|
146 |
+
stride=1
|
147 |
+
pad=1
|
148 |
+
activation=mish
|
149 |
+
|
150 |
+
[convolutional]
|
151 |
+
batch_normalize=1
|
152 |
+
filters=64
|
153 |
+
size=3
|
154 |
+
stride=1
|
155 |
+
pad=1
|
156 |
+
activation=mish
|
157 |
+
|
158 |
+
[shortcut]
|
159 |
+
from=-3
|
160 |
+
activation=linear
|
161 |
+
|
162 |
+
[convolutional]
|
163 |
+
batch_normalize=1
|
164 |
+
filters=64
|
165 |
+
size=1
|
166 |
+
stride=1
|
167 |
+
pad=1
|
168 |
+
activation=mish
|
169 |
+
|
170 |
+
[convolutional]
|
171 |
+
batch_normalize=1
|
172 |
+
filters=64
|
173 |
+
size=3
|
174 |
+
stride=1
|
175 |
+
pad=1
|
176 |
+
activation=mish
|
177 |
+
|
178 |
+
[shortcut]
|
179 |
+
from=-3
|
180 |
+
activation=linear
|
181 |
+
|
182 |
+
[convolutional]
|
183 |
+
batch_normalize=1
|
184 |
+
filters=64
|
185 |
+
size=1
|
186 |
+
stride=1
|
187 |
+
pad=1
|
188 |
+
activation=mish
|
189 |
+
|
190 |
+
[route]
|
191 |
+
layers = -1,-10
|
192 |
+
|
193 |
+
[convolutional]
|
194 |
+
batch_normalize=1
|
195 |
+
filters=128
|
196 |
+
size=1
|
197 |
+
stride=1
|
198 |
+
pad=1
|
199 |
+
activation=mish
|
200 |
+
|
201 |
+
# Downsample
|
202 |
+
|
203 |
+
[convolutional]
|
204 |
+
batch_normalize=1
|
205 |
+
filters=256
|
206 |
+
size=3
|
207 |
+
stride=2
|
208 |
+
pad=1
|
209 |
+
activation=mish
|
210 |
+
|
211 |
+
[convolutional]
|
212 |
+
batch_normalize=1
|
213 |
+
filters=128
|
214 |
+
size=1
|
215 |
+
stride=1
|
216 |
+
pad=1
|
217 |
+
activation=mish
|
218 |
+
|
219 |
+
[route]
|
220 |
+
layers = -2
|
221 |
+
|
222 |
+
[convolutional]
|
223 |
+
batch_normalize=1
|
224 |
+
filters=128
|
225 |
+
size=1
|
226 |
+
stride=1
|
227 |
+
pad=1
|
228 |
+
activation=mish
|
229 |
+
|
230 |
+
[convolutional]
|
231 |
+
batch_normalize=1
|
232 |
+
filters=128
|
233 |
+
size=1
|
234 |
+
stride=1
|
235 |
+
pad=1
|
236 |
+
activation=mish
|
237 |
+
|
238 |
+
[convolutional]
|
239 |
+
batch_normalize=1
|
240 |
+
filters=128
|
241 |
+
size=3
|
242 |
+
stride=1
|
243 |
+
pad=1
|
244 |
+
activation=mish
|
245 |
+
|
246 |
+
[shortcut]
|
247 |
+
from=-3
|
248 |
+
activation=linear
|
249 |
+
|
250 |
+
[convolutional]
|
251 |
+
batch_normalize=1
|
252 |
+
filters=128
|
253 |
+
size=1
|
254 |
+
stride=1
|
255 |
+
pad=1
|
256 |
+
activation=mish
|
257 |
+
|
258 |
+
[convolutional]
|
259 |
+
batch_normalize=1
|
260 |
+
filters=128
|
261 |
+
size=3
|
262 |
+
stride=1
|
263 |
+
pad=1
|
264 |
+
activation=mish
|
265 |
+
|
266 |
+
[shortcut]
|
267 |
+
from=-3
|
268 |
+
activation=linear
|
269 |
+
|
270 |
+
[convolutional]
|
271 |
+
batch_normalize=1
|
272 |
+
filters=128
|
273 |
+
size=1
|
274 |
+
stride=1
|
275 |
+
pad=1
|
276 |
+
activation=mish
|
277 |
+
|
278 |
+
[convolutional]
|
279 |
+
batch_normalize=1
|
280 |
+
filters=128
|
281 |
+
size=3
|
282 |
+
stride=1
|
283 |
+
pad=1
|
284 |
+
activation=mish
|
285 |
+
|
286 |
+
[shortcut]
|
287 |
+
from=-3
|
288 |
+
activation=linear
|
289 |
+
|
290 |
+
[convolutional]
|
291 |
+
batch_normalize=1
|
292 |
+
filters=128
|
293 |
+
size=1
|
294 |
+
stride=1
|
295 |
+
pad=1
|
296 |
+
activation=mish
|
297 |
+
|
298 |
+
[convolutional]
|
299 |
+
batch_normalize=1
|
300 |
+
filters=128
|
301 |
+
size=3
|
302 |
+
stride=1
|
303 |
+
pad=1
|
304 |
+
activation=mish
|
305 |
+
|
306 |
+
[shortcut]
|
307 |
+
from=-3
|
308 |
+
activation=linear
|
309 |
+
|
310 |
+
|
311 |
+
[convolutional]
|
312 |
+
batch_normalize=1
|
313 |
+
filters=128
|
314 |
+
size=1
|
315 |
+
stride=1
|
316 |
+
pad=1
|
317 |
+
activation=mish
|
318 |
+
|
319 |
+
[convolutional]
|
320 |
+
batch_normalize=1
|
321 |
+
filters=128
|
322 |
+
size=3
|
323 |
+
stride=1
|
324 |
+
pad=1
|
325 |
+
activation=mish
|
326 |
+
|
327 |
+
[shortcut]
|
328 |
+
from=-3
|
329 |
+
activation=linear
|
330 |
+
|
331 |
+
[convolutional]
|
332 |
+
batch_normalize=1
|
333 |
+
filters=128
|
334 |
+
size=1
|
335 |
+
stride=1
|
336 |
+
pad=1
|
337 |
+
activation=mish
|
338 |
+
|
339 |
+
[convolutional]
|
340 |
+
batch_normalize=1
|
341 |
+
filters=128
|
342 |
+
size=3
|
343 |
+
stride=1
|
344 |
+
pad=1
|
345 |
+
activation=mish
|
346 |
+
|
347 |
+
[shortcut]
|
348 |
+
from=-3
|
349 |
+
activation=linear
|
350 |
+
|
351 |
+
[convolutional]
|
352 |
+
batch_normalize=1
|
353 |
+
filters=128
|
354 |
+
size=1
|
355 |
+
stride=1
|
356 |
+
pad=1
|
357 |
+
activation=mish
|
358 |
+
|
359 |
+
[convolutional]
|
360 |
+
batch_normalize=1
|
361 |
+
filters=128
|
362 |
+
size=3
|
363 |
+
stride=1
|
364 |
+
pad=1
|
365 |
+
activation=mish
|
366 |
+
|
367 |
+
[shortcut]
|
368 |
+
from=-3
|
369 |
+
activation=linear
|
370 |
+
|
371 |
+
[convolutional]
|
372 |
+
batch_normalize=1
|
373 |
+
filters=128
|
374 |
+
size=1
|
375 |
+
stride=1
|
376 |
+
pad=1
|
377 |
+
activation=mish
|
378 |
+
|
379 |
+
[convolutional]
|
380 |
+
batch_normalize=1
|
381 |
+
filters=128
|
382 |
+
size=3
|
383 |
+
stride=1
|
384 |
+
pad=1
|
385 |
+
activation=mish
|
386 |
+
|
387 |
+
[shortcut]
|
388 |
+
from=-3
|
389 |
+
activation=linear
|
390 |
+
|
391 |
+
[convolutional]
|
392 |
+
batch_normalize=1
|
393 |
+
filters=128
|
394 |
+
size=1
|
395 |
+
stride=1
|
396 |
+
pad=1
|
397 |
+
activation=mish
|
398 |
+
|
399 |
+
[route]
|
400 |
+
layers = -1,-28
|
401 |
+
|
402 |
+
[convolutional]
|
403 |
+
batch_normalize=1
|
404 |
+
filters=256
|
405 |
+
size=1
|
406 |
+
stride=1
|
407 |
+
pad=1
|
408 |
+
activation=mish
|
409 |
+
|
410 |
+
# Downsample
|
411 |
+
|
412 |
+
[convolutional]
|
413 |
+
batch_normalize=1
|
414 |
+
filters=512
|
415 |
+
size=3
|
416 |
+
stride=2
|
417 |
+
pad=1
|
418 |
+
activation=mish
|
419 |
+
|
420 |
+
[convolutional]
|
421 |
+
batch_normalize=1
|
422 |
+
filters=256
|
423 |
+
size=1
|
424 |
+
stride=1
|
425 |
+
pad=1
|
426 |
+
activation=mish
|
427 |
+
|
428 |
+
[route]
|
429 |
+
layers = -2
|
430 |
+
|
431 |
+
[convolutional]
|
432 |
+
batch_normalize=1
|
433 |
+
filters=256
|
434 |
+
size=1
|
435 |
+
stride=1
|
436 |
+
pad=1
|
437 |
+
activation=mish
|
438 |
+
|
439 |
+
[convolutional]
|
440 |
+
batch_normalize=1
|
441 |
+
filters=256
|
442 |
+
size=1
|
443 |
+
stride=1
|
444 |
+
pad=1
|
445 |
+
activation=mish
|
446 |
+
|
447 |
+
[convolutional]
|
448 |
+
batch_normalize=1
|
449 |
+
filters=256
|
450 |
+
size=3
|
451 |
+
stride=1
|
452 |
+
pad=1
|
453 |
+
activation=mish
|
454 |
+
|
455 |
+
[shortcut]
|
456 |
+
from=-3
|
457 |
+
activation=linear
|
458 |
+
|
459 |
+
|
460 |
+
[convolutional]
|
461 |
+
batch_normalize=1
|
462 |
+
filters=256
|
463 |
+
size=1
|
464 |
+
stride=1
|
465 |
+
pad=1
|
466 |
+
activation=mish
|
467 |
+
|
468 |
+
[convolutional]
|
469 |
+
batch_normalize=1
|
470 |
+
filters=256
|
471 |
+
size=3
|
472 |
+
stride=1
|
473 |
+
pad=1
|
474 |
+
activation=mish
|
475 |
+
|
476 |
+
[shortcut]
|
477 |
+
from=-3
|
478 |
+
activation=linear
|
479 |
+
|
480 |
+
|
481 |
+
[convolutional]
|
482 |
+
batch_normalize=1
|
483 |
+
filters=256
|
484 |
+
size=1
|
485 |
+
stride=1
|
486 |
+
pad=1
|
487 |
+
activation=mish
|
488 |
+
|
489 |
+
[convolutional]
|
490 |
+
batch_normalize=1
|
491 |
+
filters=256
|
492 |
+
size=3
|
493 |
+
stride=1
|
494 |
+
pad=1
|
495 |
+
activation=mish
|
496 |
+
|
497 |
+
[shortcut]
|
498 |
+
from=-3
|
499 |
+
activation=linear
|
500 |
+
|
501 |
+
|
502 |
+
[convolutional]
|
503 |
+
batch_normalize=1
|
504 |
+
filters=256
|
505 |
+
size=1
|
506 |
+
stride=1
|
507 |
+
pad=1
|
508 |
+
activation=mish
|
509 |
+
|
510 |
+
[convolutional]
|
511 |
+
batch_normalize=1
|
512 |
+
filters=256
|
513 |
+
size=3
|
514 |
+
stride=1
|
515 |
+
pad=1
|
516 |
+
activation=mish
|
517 |
+
|
518 |
+
[shortcut]
|
519 |
+
from=-3
|
520 |
+
activation=linear
|
521 |
+
|
522 |
+
|
523 |
+
[convolutional]
|
524 |
+
batch_normalize=1
|
525 |
+
filters=256
|
526 |
+
size=1
|
527 |
+
stride=1
|
528 |
+
pad=1
|
529 |
+
activation=mish
|
530 |
+
|
531 |
+
[convolutional]
|
532 |
+
batch_normalize=1
|
533 |
+
filters=256
|
534 |
+
size=3
|
535 |
+
stride=1
|
536 |
+
pad=1
|
537 |
+
activation=mish
|
538 |
+
|
539 |
+
[shortcut]
|
540 |
+
from=-3
|
541 |
+
activation=linear
|
542 |
+
|
543 |
+
|
544 |
+
[convolutional]
|
545 |
+
batch_normalize=1
|
546 |
+
filters=256
|
547 |
+
size=1
|
548 |
+
stride=1
|
549 |
+
pad=1
|
550 |
+
activation=mish
|
551 |
+
|
552 |
+
[convolutional]
|
553 |
+
batch_normalize=1
|
554 |
+
filters=256
|
555 |
+
size=3
|
556 |
+
stride=1
|
557 |
+
pad=1
|
558 |
+
activation=mish
|
559 |
+
|
560 |
+
[shortcut]
|
561 |
+
from=-3
|
562 |
+
activation=linear
|
563 |
+
|
564 |
+
|
565 |
+
[convolutional]
|
566 |
+
batch_normalize=1
|
567 |
+
filters=256
|
568 |
+
size=1
|
569 |
+
stride=1
|
570 |
+
pad=1
|
571 |
+
activation=mish
|
572 |
+
|
573 |
+
[convolutional]
|
574 |
+
batch_normalize=1
|
575 |
+
filters=256
|
576 |
+
size=3
|
577 |
+
stride=1
|
578 |
+
pad=1
|
579 |
+
activation=mish
|
580 |
+
|
581 |
+
[shortcut]
|
582 |
+
from=-3
|
583 |
+
activation=linear
|
584 |
+
|
585 |
+
[convolutional]
|
586 |
+
batch_normalize=1
|
587 |
+
filters=256
|
588 |
+
size=1
|
589 |
+
stride=1
|
590 |
+
pad=1
|
591 |
+
activation=mish
|
592 |
+
|
593 |
+
[convolutional]
|
594 |
+
batch_normalize=1
|
595 |
+
filters=256
|
596 |
+
size=3
|
597 |
+
stride=1
|
598 |
+
pad=1
|
599 |
+
activation=mish
|
600 |
+
|
601 |
+
[shortcut]
|
602 |
+
from=-3
|
603 |
+
activation=linear
|
604 |
+
|
605 |
+
[convolutional]
|
606 |
+
batch_normalize=1
|
607 |
+
filters=256
|
608 |
+
size=1
|
609 |
+
stride=1
|
610 |
+
pad=1
|
611 |
+
activation=mish
|
612 |
+
|
613 |
+
[route]
|
614 |
+
layers = -1,-28
|
615 |
+
|
616 |
+
[convolutional]
|
617 |
+
batch_normalize=1
|
618 |
+
filters=512
|
619 |
+
size=1
|
620 |
+
stride=1
|
621 |
+
pad=1
|
622 |
+
activation=mish
|
623 |
+
|
624 |
+
# Downsample
|
625 |
+
|
626 |
+
[convolutional]
|
627 |
+
batch_normalize=1
|
628 |
+
filters=1024
|
629 |
+
size=3
|
630 |
+
stride=2
|
631 |
+
pad=1
|
632 |
+
activation=mish
|
633 |
+
|
634 |
+
[convolutional]
|
635 |
+
batch_normalize=1
|
636 |
+
filters=512
|
637 |
+
size=1
|
638 |
+
stride=1
|
639 |
+
pad=1
|
640 |
+
activation=mish
|
641 |
+
|
642 |
+
[route]
|
643 |
+
layers = -2
|
644 |
+
|
645 |
+
[convolutional]
|
646 |
+
batch_normalize=1
|
647 |
+
filters=512
|
648 |
+
size=1
|
649 |
+
stride=1
|
650 |
+
pad=1
|
651 |
+
activation=mish
|
652 |
+
|
653 |
+
[convolutional]
|
654 |
+
batch_normalize=1
|
655 |
+
filters=512
|
656 |
+
size=1
|
657 |
+
stride=1
|
658 |
+
pad=1
|
659 |
+
activation=mish
|
660 |
+
|
661 |
+
[convolutional]
|
662 |
+
batch_normalize=1
|
663 |
+
filters=512
|
664 |
+
size=3
|
665 |
+
stride=1
|
666 |
+
pad=1
|
667 |
+
activation=mish
|
668 |
+
|
669 |
+
[shortcut]
|
670 |
+
from=-3
|
671 |
+
activation=linear
|
672 |
+
|
673 |
+
[convolutional]
|
674 |
+
batch_normalize=1
|
675 |
+
filters=512
|
676 |
+
size=1
|
677 |
+
stride=1
|
678 |
+
pad=1
|
679 |
+
activation=mish
|
680 |
+
|
681 |
+
[convolutional]
|
682 |
+
batch_normalize=1
|
683 |
+
filters=512
|
684 |
+
size=3
|
685 |
+
stride=1
|
686 |
+
pad=1
|
687 |
+
activation=mish
|
688 |
+
|
689 |
+
[shortcut]
|
690 |
+
from=-3
|
691 |
+
activation=linear
|
692 |
+
|
693 |
+
[convolutional]
|
694 |
+
batch_normalize=1
|
695 |
+
filters=512
|
696 |
+
size=1
|
697 |
+
stride=1
|
698 |
+
pad=1
|
699 |
+
activation=mish
|
700 |
+
|
701 |
+
[convolutional]
|
702 |
+
batch_normalize=1
|
703 |
+
filters=512
|
704 |
+
size=3
|
705 |
+
stride=1
|
706 |
+
pad=1
|
707 |
+
activation=mish
|
708 |
+
|
709 |
+
[shortcut]
|
710 |
+
from=-3
|
711 |
+
activation=linear
|
712 |
+
|
713 |
+
[convolutional]
|
714 |
+
batch_normalize=1
|
715 |
+
filters=512
|
716 |
+
size=1
|
717 |
+
stride=1
|
718 |
+
pad=1
|
719 |
+
activation=mish
|
720 |
+
|
721 |
+
[convolutional]
|
722 |
+
batch_normalize=1
|
723 |
+
filters=512
|
724 |
+
size=3
|
725 |
+
stride=1
|
726 |
+
pad=1
|
727 |
+
activation=mish
|
728 |
+
|
729 |
+
[shortcut]
|
730 |
+
from=-3
|
731 |
+
activation=linear
|
732 |
+
|
733 |
+
[convolutional]
|
734 |
+
batch_normalize=1
|
735 |
+
filters=512
|
736 |
+
size=1
|
737 |
+
stride=1
|
738 |
+
pad=1
|
739 |
+
activation=mish
|
740 |
+
|
741 |
+
[route]
|
742 |
+
layers = -1,-16
|
743 |
+
|
744 |
+
[convolutional]
|
745 |
+
batch_normalize=1
|
746 |
+
filters=1024
|
747 |
+
size=1
|
748 |
+
stride=1
|
749 |
+
pad=1
|
750 |
+
activation=mish
|
751 |
+
|
752 |
+
##########################
|
753 |
+
|
754 |
+
[convolutional]
|
755 |
+
batch_normalize=1
|
756 |
+
filters=512
|
757 |
+
size=1
|
758 |
+
stride=1
|
759 |
+
pad=1
|
760 |
+
activation=mish
|
761 |
+
|
762 |
+
[route]
|
763 |
+
layers = -2
|
764 |
+
|
765 |
+
[convolutional]
|
766 |
+
batch_normalize=1
|
767 |
+
filters=512
|
768 |
+
size=1
|
769 |
+
stride=1
|
770 |
+
pad=1
|
771 |
+
activation=mish
|
772 |
+
|
773 |
+
[convolutional]
|
774 |
+
batch_normalize=1
|
775 |
+
size=3
|
776 |
+
stride=1
|
777 |
+
pad=1
|
778 |
+
filters=512
|
779 |
+
activation=mish
|
780 |
+
|
781 |
+
[convolutional]
|
782 |
+
batch_normalize=1
|
783 |
+
filters=512
|
784 |
+
size=1
|
785 |
+
stride=1
|
786 |
+
pad=1
|
787 |
+
activation=mish
|
788 |
+
|
789 |
+
### SPP ###
|
790 |
+
[maxpool]
|
791 |
+
stride=1
|
792 |
+
size=5
|
793 |
+
|
794 |
+
[route]
|
795 |
+
layers=-2
|
796 |
+
|
797 |
+
[maxpool]
|
798 |
+
stride=1
|
799 |
+
size=9
|
800 |
+
|
801 |
+
[route]
|
802 |
+
layers=-4
|
803 |
+
|
804 |
+
[maxpool]
|
805 |
+
stride=1
|
806 |
+
size=13
|
807 |
+
|
808 |
+
[route]
|
809 |
+
layers=-1,-3,-5,-6
|
810 |
+
### End SPP ###
|
811 |
+
|
812 |
+
[convolutional]
|
813 |
+
batch_normalize=1
|
814 |
+
filters=512
|
815 |
+
size=1
|
816 |
+
stride=1
|
817 |
+
pad=1
|
818 |
+
activation=mish
|
819 |
+
|
820 |
+
[convolutional]
|
821 |
+
batch_normalize=1
|
822 |
+
size=3
|
823 |
+
stride=1
|
824 |
+
pad=1
|
825 |
+
filters=512
|
826 |
+
activation=mish
|
827 |
+
|
828 |
+
[route]
|
829 |
+
layers = -1, -13
|
830 |
+
|
831 |
+
[convolutional]
|
832 |
+
batch_normalize=1
|
833 |
+
filters=512
|
834 |
+
size=1
|
835 |
+
stride=1
|
836 |
+
pad=1
|
837 |
+
activation=mish
|
838 |
+
|
839 |
+
[convolutional]
|
840 |
+
batch_normalize=1
|
841 |
+
filters=256
|
842 |
+
size=1
|
843 |
+
stride=1
|
844 |
+
pad=1
|
845 |
+
activation=mish
|
846 |
+
|
847 |
+
[upsample]
|
848 |
+
stride=2
|
849 |
+
|
850 |
+
[route]
|
851 |
+
layers = 79
|
852 |
+
|
853 |
+
[convolutional]
|
854 |
+
batch_normalize=1
|
855 |
+
filters=256
|
856 |
+
size=1
|
857 |
+
stride=1
|
858 |
+
pad=1
|
859 |
+
activation=mish
|
860 |
+
|
861 |
+
[route]
|
862 |
+
layers = -1, -3
|
863 |
+
|
864 |
+
[convolutional]
|
865 |
+
batch_normalize=1
|
866 |
+
filters=256
|
867 |
+
size=1
|
868 |
+
stride=1
|
869 |
+
pad=1
|
870 |
+
activation=mish
|
871 |
+
|
872 |
+
[convolutional]
|
873 |
+
batch_normalize=1
|
874 |
+
filters=256
|
875 |
+
size=1
|
876 |
+
stride=1
|
877 |
+
pad=1
|
878 |
+
activation=mish
|
879 |
+
|
880 |
+
[route]
|
881 |
+
layers = -2
|
882 |
+
|
883 |
+
[convolutional]
|
884 |
+
batch_normalize=1
|
885 |
+
filters=256
|
886 |
+
size=1
|
887 |
+
stride=1
|
888 |
+
pad=1
|
889 |
+
activation=mish
|
890 |
+
|
891 |
+
[convolutional]
|
892 |
+
batch_normalize=1
|
893 |
+
size=3
|
894 |
+
stride=1
|
895 |
+
pad=1
|
896 |
+
filters=256
|
897 |
+
activation=mish
|
898 |
+
|
899 |
+
[convolutional]
|
900 |
+
batch_normalize=1
|
901 |
+
filters=256
|
902 |
+
size=1
|
903 |
+
stride=1
|
904 |
+
pad=1
|
905 |
+
activation=mish
|
906 |
+
|
907 |
+
[convolutional]
|
908 |
+
batch_normalize=1
|
909 |
+
size=3
|
910 |
+
stride=1
|
911 |
+
pad=1
|
912 |
+
filters=256
|
913 |
+
activation=mish
|
914 |
+
|
915 |
+
[route]
|
916 |
+
layers = -1, -6
|
917 |
+
|
918 |
+
[convolutional]
|
919 |
+
batch_normalize=1
|
920 |
+
filters=256
|
921 |
+
size=1
|
922 |
+
stride=1
|
923 |
+
pad=1
|
924 |
+
activation=mish
|
925 |
+
|
926 |
+
[convolutional]
|
927 |
+
batch_normalize=1
|
928 |
+
filters=128
|
929 |
+
size=1
|
930 |
+
stride=1
|
931 |
+
pad=1
|
932 |
+
activation=mish
|
933 |
+
|
934 |
+
[upsample]
|
935 |
+
stride=2
|
936 |
+
|
937 |
+
[route]
|
938 |
+
layers = 48
|
939 |
+
|
940 |
+
[convolutional]
|
941 |
+
batch_normalize=1
|
942 |
+
filters=128
|
943 |
+
size=1
|
944 |
+
stride=1
|
945 |
+
pad=1
|
946 |
+
activation=mish
|
947 |
+
|
948 |
+
[route]
|
949 |
+
layers = -1, -3
|
950 |
+
|
951 |
+
[convolutional]
|
952 |
+
batch_normalize=1
|
953 |
+
filters=128
|
954 |
+
size=1
|
955 |
+
stride=1
|
956 |
+
pad=1
|
957 |
+
activation=mish
|
958 |
+
|
959 |
+
[convolutional]
|
960 |
+
batch_normalize=1
|
961 |
+
filters=128
|
962 |
+
size=1
|
963 |
+
stride=1
|
964 |
+
pad=1
|
965 |
+
activation=mish
|
966 |
+
|
967 |
+
[route]
|
968 |
+
layers = -2
|
969 |
+
|
970 |
+
[convolutional]
|
971 |
+
batch_normalize=1
|
972 |
+
filters=128
|
973 |
+
size=1
|
974 |
+
stride=1
|
975 |
+
pad=1
|
976 |
+
activation=mish
|
977 |
+
|
978 |
+
[convolutional]
|
979 |
+
batch_normalize=1
|
980 |
+
size=3
|
981 |
+
stride=1
|
982 |
+
pad=1
|
983 |
+
filters=128
|
984 |
+
activation=mish
|
985 |
+
|
986 |
+
[convolutional]
|
987 |
+
batch_normalize=1
|
988 |
+
filters=128
|
989 |
+
size=1
|
990 |
+
stride=1
|
991 |
+
pad=1
|
992 |
+
activation=mish
|
993 |
+
|
994 |
+
[convolutional]
|
995 |
+
batch_normalize=1
|
996 |
+
size=3
|
997 |
+
stride=1
|
998 |
+
pad=1
|
999 |
+
filters=128
|
1000 |
+
activation=mish
|
1001 |
+
|
1002 |
+
[route]
|
1003 |
+
layers = -1, -6
|
1004 |
+
|
1005 |
+
[convolutional]
|
1006 |
+
batch_normalize=1
|
1007 |
+
filters=128
|
1008 |
+
size=1
|
1009 |
+
stride=1
|
1010 |
+
pad=1
|
1011 |
+
activation=mish
|
1012 |
+
|
1013 |
+
##########################
|
1014 |
+
|
1015 |
+
[convolutional]
|
1016 |
+
batch_normalize=1
|
1017 |
+
size=3
|
1018 |
+
stride=1
|
1019 |
+
pad=1
|
1020 |
+
filters=256
|
1021 |
+
activation=mish
|
1022 |
+
|
1023 |
+
[convolutional]
|
1024 |
+
size=1
|
1025 |
+
stride=1
|
1026 |
+
pad=1
|
1027 |
+
filters=255
|
1028 |
+
activation=logistic
|
1029 |
+
|
1030 |
+
|
1031 |
+
[yolo]
|
1032 |
+
mask = 0,1,2
|
1033 |
+
anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
|
1034 |
+
classes=80
|
1035 |
+
num=9
|
1036 |
+
jitter=.1
|
1037 |
+
scale_x_y = 2.0
|
1038 |
+
objectness_smooth=0
|
1039 |
+
ignore_thresh = .7
|
1040 |
+
truth_thresh = 1
|
1041 |
+
#random=1
|
1042 |
+
resize=1.5
|
1043 |
+
iou_thresh=0.2
|
1044 |
+
iou_normalizer=0.05
|
1045 |
+
cls_normalizer=0.5
|
1046 |
+
obj_normalizer=4.0
|
1047 |
+
iou_loss=ciou
|
1048 |
+
nms_kind=diounms
|
1049 |
+
beta_nms=0.6
|
1050 |
+
new_coords=1
|
1051 |
+
max_delta=5
|
1052 |
+
|
1053 |
+
[route]
|
1054 |
+
layers = -4
|
1055 |
+
|
1056 |
+
[convolutional]
|
1057 |
+
batch_normalize=1
|
1058 |
+
size=3
|
1059 |
+
stride=2
|
1060 |
+
pad=1
|
1061 |
+
filters=256
|
1062 |
+
activation=mish
|
1063 |
+
|
1064 |
+
[route]
|
1065 |
+
layers = -1, -20
|
1066 |
+
|
1067 |
+
[convolutional]
|
1068 |
+
batch_normalize=1
|
1069 |
+
filters=256
|
1070 |
+
size=1
|
1071 |
+
stride=1
|
1072 |
+
pad=1
|
1073 |
+
activation=mish
|
1074 |
+
|
1075 |
+
[convolutional]
|
1076 |
+
batch_normalize=1
|
1077 |
+
filters=256
|
1078 |
+
size=1
|
1079 |
+
stride=1
|
1080 |
+
pad=1
|
1081 |
+
activation=mish
|
1082 |
+
|
1083 |
+
[route]
|
1084 |
+
layers = -2
|
1085 |
+
|
1086 |
+
[convolutional]
|
1087 |
+
batch_normalize=1
|
1088 |
+
filters=256
|
1089 |
+
size=1
|
1090 |
+
stride=1
|
1091 |
+
pad=1
|
1092 |
+
activation=mish
|
1093 |
+
|
1094 |
+
[convolutional]
|
1095 |
+
batch_normalize=1
|
1096 |
+
size=3
|
1097 |
+
stride=1
|
1098 |
+
pad=1
|
1099 |
+
filters=256
|
1100 |
+
activation=mish
|
1101 |
+
|
1102 |
+
[convolutional]
|
1103 |
+
batch_normalize=1
|
1104 |
+
filters=256
|
1105 |
+
size=1
|
1106 |
+
stride=1
|
1107 |
+
pad=1
|
1108 |
+
activation=mish
|
1109 |
+
|
1110 |
+
[convolutional]
|
1111 |
+
batch_normalize=1
|
1112 |
+
size=3
|
1113 |
+
stride=1
|
1114 |
+
pad=1
|
1115 |
+
filters=256
|
1116 |
+
activation=mish
|
1117 |
+
|
1118 |
+
[route]
|
1119 |
+
layers = -1,-6
|
1120 |
+
|
1121 |
+
[convolutional]
|
1122 |
+
batch_normalize=1
|
1123 |
+
filters=256
|
1124 |
+
size=1
|
1125 |
+
stride=1
|
1126 |
+
pad=1
|
1127 |
+
activation=mish
|
1128 |
+
|
1129 |
+
[convolutional]
|
1130 |
+
batch_normalize=1
|
1131 |
+
size=3
|
1132 |
+
stride=1
|
1133 |
+
pad=1
|
1134 |
+
filters=512
|
1135 |
+
activation=mish
|
1136 |
+
|
1137 |
+
[convolutional]
|
1138 |
+
size=1
|
1139 |
+
stride=1
|
1140 |
+
pad=1
|
1141 |
+
filters=255
|
1142 |
+
activation=logistic
|
1143 |
+
|
1144 |
+
|
1145 |
+
[yolo]
|
1146 |
+
mask = 3,4,5
|
1147 |
+
anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
|
1148 |
+
classes=80
|
1149 |
+
num=9
|
1150 |
+
jitter=.1
|
1151 |
+
scale_x_y = 2.0
|
1152 |
+
objectness_smooth=1
|
1153 |
+
ignore_thresh = .7
|
1154 |
+
truth_thresh = 1
|
1155 |
+
#random=1
|
1156 |
+
resize=1.5
|
1157 |
+
iou_thresh=0.2
|
1158 |
+
iou_normalizer=0.05
|
1159 |
+
cls_normalizer=0.5
|
1160 |
+
obj_normalizer=1.0
|
1161 |
+
iou_loss=ciou
|
1162 |
+
nms_kind=diounms
|
1163 |
+
beta_nms=0.6
|
1164 |
+
new_coords=1
|
1165 |
+
max_delta=5
|
1166 |
+
|
1167 |
+
[route]
|
1168 |
+
layers = -4
|
1169 |
+
|
1170 |
+
[convolutional]
|
1171 |
+
batch_normalize=1
|
1172 |
+
size=3
|
1173 |
+
stride=2
|
1174 |
+
pad=1
|
1175 |
+
filters=512
|
1176 |
+
activation=mish
|
1177 |
+
|
1178 |
+
[route]
|
1179 |
+
layers = -1, -49
|
1180 |
+
|
1181 |
+
[convolutional]
|
1182 |
+
batch_normalize=1
|
1183 |
+
filters=512
|
1184 |
+
size=1
|
1185 |
+
stride=1
|
1186 |
+
pad=1
|
1187 |
+
activation=mish
|
1188 |
+
|
1189 |
+
[convolutional]
|
1190 |
+
batch_normalize=1
|
1191 |
+
filters=512
|
1192 |
+
size=1
|
1193 |
+
stride=1
|
1194 |
+
pad=1
|
1195 |
+
activation=mish
|
1196 |
+
|
1197 |
+
[route]
|
1198 |
+
layers = -2
|
1199 |
+
|
1200 |
+
[convolutional]
|
1201 |
+
batch_normalize=1
|
1202 |
+
filters=512
|
1203 |
+
size=1
|
1204 |
+
stride=1
|
1205 |
+
pad=1
|
1206 |
+
activation=mish
|
1207 |
+
|
1208 |
+
[convolutional]
|
1209 |
+
batch_normalize=1
|
1210 |
+
size=3
|
1211 |
+
stride=1
|
1212 |
+
pad=1
|
1213 |
+
filters=512
|
1214 |
+
activation=mish
|
1215 |
+
|
1216 |
+
[convolutional]
|
1217 |
+
batch_normalize=1
|
1218 |
+
filters=512
|
1219 |
+
size=1
|
1220 |
+
stride=1
|
1221 |
+
pad=1
|
1222 |
+
activation=mish
|
1223 |
+
|
1224 |
+
[convolutional]
|
1225 |
+
batch_normalize=1
|
1226 |
+
size=3
|
1227 |
+
stride=1
|
1228 |
+
pad=1
|
1229 |
+
filters=512
|
1230 |
+
activation=mish
|
1231 |
+
|
1232 |
+
[route]
|
1233 |
+
layers = -1,-6
|
1234 |
+
|
1235 |
+
[convolutional]
|
1236 |
+
batch_normalize=1
|
1237 |
+
filters=512
|
1238 |
+
size=1
|
1239 |
+
stride=1
|
1240 |
+
pad=1
|
1241 |
+
activation=mish
|
1242 |
+
|
1243 |
+
[convolutional]
|
1244 |
+
batch_normalize=1
|
1245 |
+
size=3
|
1246 |
+
stride=1
|
1247 |
+
pad=1
|
1248 |
+
filters=1024
|
1249 |
+
activation=mish
|
1250 |
+
|
1251 |
+
[convolutional]
|
1252 |
+
size=1
|
1253 |
+
stride=1
|
1254 |
+
pad=1
|
1255 |
+
filters=255
|
1256 |
+
activation=logistic
|
1257 |
+
|
1258 |
+
|
1259 |
+
[yolo]
|
1260 |
+
mask = 6,7,8
|
1261 |
+
anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
|
1262 |
+
classes=80
|
1263 |
+
num=9
|
1264 |
+
jitter=.1
|
1265 |
+
scale_x_y = 2.0
|
1266 |
+
objectness_smooth=1
|
1267 |
+
ignore_thresh = .7
|
1268 |
+
truth_thresh = 1
|
1269 |
+
#random=1
|
1270 |
+
resize=1.5
|
1271 |
+
iou_thresh=0.2
|
1272 |
+
iou_normalizer=0.05
|
1273 |
+
cls_normalizer=0.5
|
1274 |
+
obj_normalizer=0.4
|
1275 |
+
iou_loss=ciou
|
1276 |
+
nms_kind=diounms
|
1277 |
+
beta_nms=0.6
|
1278 |
+
new_coords=1
|
1279 |
+
max_delta=2
|
testspace/models/yolov4_csp/yolov4-csp.weights
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:019496affba568f7439e54797a1772657bb01126b707fbd93407c0b20c20dca1
|
3 |
+
size 211944840
|
testspace/models/yolov5/coco.names
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
person
|
2 |
+
bicycle
|
3 |
+
car
|
4 |
+
motorbike
|
5 |
+
aeroplane
|
6 |
+
bus
|
7 |
+
train
|
8 |
+
truck
|
9 |
+
boat
|
10 |
+
traffic light
|
11 |
+
fire hydrant
|
12 |
+
stop sign
|
13 |
+
parking meter
|
14 |
+
bench
|
15 |
+
bird
|
16 |
+
cat
|
17 |
+
dog
|
18 |
+
horse
|
19 |
+
sheep
|
20 |
+
cow
|
21 |
+
elephant
|
22 |
+
bear
|
23 |
+
zebra
|
24 |
+
giraffe
|
25 |
+
backpack
|
26 |
+
umbrella
|
27 |
+
handbag
|
28 |
+
tie
|
29 |
+
suitcase
|
30 |
+
frisbee
|
31 |
+
skis
|
32 |
+
snowboard
|
33 |
+
sports ball
|
34 |
+
kite
|
35 |
+
baseball bat
|
36 |
+
baseball glove
|
37 |
+
skateboard
|
38 |
+
surfboard
|
39 |
+
tennis racket
|
40 |
+
bottle
|
41 |
+
wine glass
|
42 |
+
cup
|
43 |
+
fork
|
44 |
+
knife
|
45 |
+
spoon
|
46 |
+
bowl
|
47 |
+
banana
|
48 |
+
apple
|
49 |
+
sandwich
|
50 |
+
orange
|
51 |
+
broccoli
|
52 |
+
carrot
|
53 |
+
hot dog
|
54 |
+
pizza
|
55 |
+
donut
|
56 |
+
cake
|
57 |
+
chair
|
58 |
+
sofa
|
59 |
+
pottedplant
|
60 |
+
bed
|
61 |
+
diningtable
|
62 |
+
toilet
|
63 |
+
tvmonitor
|
64 |
+
laptop
|
65 |
+
mouse
|
66 |
+
remote
|
67 |
+
keyboard
|
68 |
+
cell phone
|
69 |
+
microwave
|
70 |
+
oven
|
71 |
+
toaster
|
72 |
+
sink
|
73 |
+
refrigerator
|
74 |
+
book
|
75 |
+
clock
|
76 |
+
vase
|
77 |
+
scissors
|
78 |
+
teddy bear
|
79 |
+
hair drier
|
80 |
+
toothbrush
|
testspace/models/yolov5/yolov5l.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6d354c552d2562a020b24f695b75abed9e4298781eba3c9a2d55c9738479dd0c
|
3 |
+
size 93344111
|
testspace/models/yolov5/yolov5m.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c46186375067d43cf479d014ce8cd3af4c1489fb13b4ebf4e2470d9def12f7d9
|
3 |
+
size 42606277
|
testspace/models/yolov5/yolov5n.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:04f0e55c26f58d17145b36045780fe1250d5bd2187543e11568e5141d05b3262
|
3 |
+
size 3981910
|
testspace/models/yolov5/yolov5s.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8bc25a47abdbe2fd23e30eb948746bf856b031ea3cc815166687f52db9f8c659
|
3 |
+
size 14698981
|
testspace/models/yolov5/yolov5x.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:81dc04d46512126d1545b7898abf9451526be7abdf4a748a48185dd1ccec42f8
|
3 |
+
size 173701522
|
testspace/models/yolov6/coco.names
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
person
|
2 |
+
bicycle
|
3 |
+
car
|
4 |
+
motorbike
|
5 |
+
aeroplane
|
6 |
+
bus
|
7 |
+
train
|
8 |
+
truck
|
9 |
+
boat
|
10 |
+
traffic light
|
11 |
+
fire hydrant
|
12 |
+
stop sign
|
13 |
+
parking meter
|
14 |
+
bench
|
15 |
+
bird
|
16 |
+
cat
|
17 |
+
dog
|
18 |
+
horse
|
19 |
+
sheep
|
20 |
+
cow
|
21 |
+
elephant
|
22 |
+
bear
|
23 |
+
zebra
|
24 |
+
giraffe
|
25 |
+
backpack
|
26 |
+
umbrella
|
27 |
+
handbag
|
28 |
+
tie
|
29 |
+
suitcase
|
30 |
+
frisbee
|
31 |
+
skis
|
32 |
+
snowboard
|
33 |
+
sports ball
|
34 |
+
kite
|
35 |
+
baseball bat
|
36 |
+
baseball glove
|
37 |
+
skateboard
|
38 |
+
surfboard
|
39 |
+
tennis racket
|
40 |
+
bottle
|
41 |
+
wine glass
|
42 |
+
cup
|
43 |
+
fork
|
44 |
+
knife
|
45 |
+
spoon
|
46 |
+
bowl
|
47 |
+
banana
|
48 |
+
apple
|
49 |
+
sandwich
|
50 |
+
orange
|
51 |
+
broccoli
|
52 |
+
carrot
|
53 |
+
hot dog
|
54 |
+
pizza
|
55 |
+
donut
|
56 |
+
cake
|
57 |
+
chair
|
58 |
+
sofa
|
59 |
+
pottedplant
|
60 |
+
bed
|
61 |
+
diningtable
|
62 |
+
toilet
|
63 |
+
tvmonitor
|
64 |
+
laptop
|
65 |
+
mouse
|
66 |
+
remote
|
67 |
+
keyboard
|
68 |
+
cell phone
|
69 |
+
microwave
|
70 |
+
oven
|
71 |
+
toaster
|
72 |
+
sink
|
73 |
+
refrigerator
|
74 |
+
book
|
75 |
+
clock
|
76 |
+
vase
|
77 |
+
scissors
|
78 |
+
teddy bear
|
79 |
+
hair drier
|
80 |
+
toothbrush
|
testspace/models/yolov6/yolov6l.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ba0165ee0d4da80f4e1b0e2b2812dd4c1a0c2ffc495d6b2abc936ee71741e4fe
|
3 |
+
size 238667120
|
testspace/models/yolov6/yolov6m.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:336ad954faa28fb902b509c1ffe673b71faa49eacf5e4d6694775d80fdfe5091
|
3 |
+
size 139620578
|
testspace/models/yolov6/yolov6n.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f716bde8432f6960d1133cbbebfe576d7f7b11b0222ef502b982ddefddaee709
|
3 |
+
size 18758592
|
testspace/models/yolov6/yolov6s.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e00eff8953ac88bbbbc85c306dc18850e5a6b545864f5ab8e2c4e7b824f072bf
|
3 |
+
size 74320101
|
testspace/models/yolov7/coco.names
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
person
|
2 |
+
bicycle
|
3 |
+
car
|
4 |
+
motorbike
|
5 |
+
aeroplane
|
6 |
+
bus
|
7 |
+
train
|
8 |
+
truck
|
9 |
+
boat
|
10 |
+
traffic light
|
11 |
+
fire hydrant
|
12 |
+
stop sign
|
13 |
+
parking meter
|
14 |
+
bench
|
15 |
+
bird
|
16 |
+
cat
|
17 |
+
dog
|
18 |
+
horse
|
19 |
+
sheep
|
20 |
+
cow
|
21 |
+
elephant
|
22 |
+
bear
|
23 |
+
zebra
|
24 |
+
giraffe
|
25 |
+
backpack
|
26 |
+
umbrella
|
27 |
+
handbag
|
28 |
+
tie
|
29 |
+
suitcase
|
30 |
+
frisbee
|
31 |
+
skis
|
32 |
+
snowboard
|
33 |
+
sports ball
|
34 |
+
kite
|
35 |
+
baseball bat
|
36 |
+
baseball glove
|
37 |
+
skateboard
|
38 |
+
surfboard
|
39 |
+
tennis racket
|
40 |
+
bottle
|
41 |
+
wine glass
|
42 |
+
cup
|
43 |
+
fork
|
44 |
+
knife
|
45 |
+
spoon
|
46 |
+
bowl
|
47 |
+
banana
|
48 |
+
apple
|
49 |
+
sandwich
|
50 |
+
orange
|
51 |
+
broccoli
|
52 |
+
carrot
|
53 |
+
hot dog
|
54 |
+
pizza
|
55 |
+
donut
|
56 |
+
cake
|
57 |
+
chair
|
58 |
+
sofa
|
59 |
+
pottedplant
|
60 |
+
bed
|
61 |
+
diningtable
|
62 |
+
toilet
|
63 |
+
tvmonitor
|
64 |
+
laptop
|
65 |
+
mouse
|
66 |
+
remote
|
67 |
+
keyboard
|
68 |
+
cell phone
|
69 |
+
microwave
|
70 |
+
oven
|
71 |
+
toaster
|
72 |
+
sink
|
73 |
+
refrigerator
|
74 |
+
book
|
75 |
+
clock
|
76 |
+
vase
|
77 |
+
scissors
|
78 |
+
teddy bear
|
79 |
+
hair drier
|
80 |
+
toothbrush
|
testspace/models/yolov7/yolov7-tiny.cfg
ADDED
@@ -0,0 +1,706 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[net]
|
2 |
+
# Testing
|
3 |
+
#batch=1
|
4 |
+
#subdivisions=1
|
5 |
+
# Training
|
6 |
+
batch=64
|
7 |
+
subdivisions=1
|
8 |
+
width=416
|
9 |
+
height=416
|
10 |
+
channels=3
|
11 |
+
momentum=0.9
|
12 |
+
decay=0.0005
|
13 |
+
angle=0
|
14 |
+
saturation = 1.5
|
15 |
+
exposure = 1.5
|
16 |
+
hue=.1
|
17 |
+
|
18 |
+
learning_rate=0.00261
|
19 |
+
burn_in=1000
|
20 |
+
|
21 |
+
max_batches = 2000200
|
22 |
+
policy=steps
|
23 |
+
steps=1600000,1800000
|
24 |
+
scales=.1,.1
|
25 |
+
|
26 |
+
# 0
|
27 |
+
[convolutional]
|
28 |
+
batch_normalize=1
|
29 |
+
filters=32
|
30 |
+
size=3
|
31 |
+
stride=2
|
32 |
+
pad=1
|
33 |
+
activation=leaky
|
34 |
+
|
35 |
+
# 1
|
36 |
+
[convolutional]
|
37 |
+
batch_normalize=1
|
38 |
+
filters=64
|
39 |
+
size=3
|
40 |
+
stride=2
|
41 |
+
pad=1
|
42 |
+
activation=leaky
|
43 |
+
|
44 |
+
[convolutional]
|
45 |
+
batch_normalize=1
|
46 |
+
filters=32
|
47 |
+
size=1
|
48 |
+
stride=1
|
49 |
+
pad=1
|
50 |
+
activation=leaky
|
51 |
+
|
52 |
+
[route]
|
53 |
+
layers=-2
|
54 |
+
|
55 |
+
[convolutional]
|
56 |
+
batch_normalize=1
|
57 |
+
filters=32
|
58 |
+
size=1
|
59 |
+
stride=1
|
60 |
+
pad=1
|
61 |
+
activation=leaky
|
62 |
+
|
63 |
+
[convolutional]
|
64 |
+
batch_normalize=1
|
65 |
+
filters=32
|
66 |
+
size=3
|
67 |
+
stride=1
|
68 |
+
pad=1
|
69 |
+
activation=leaky
|
70 |
+
|
71 |
+
[convolutional]
|
72 |
+
batch_normalize=1
|
73 |
+
filters=32
|
74 |
+
size=3
|
75 |
+
stride=1
|
76 |
+
pad=1
|
77 |
+
activation=leaky
|
78 |
+
|
79 |
+
[route]
|
80 |
+
layers = -5,-3,-2,-1
|
81 |
+
|
82 |
+
# 8
|
83 |
+
[convolutional]
|
84 |
+
batch_normalize=1
|
85 |
+
filters=64
|
86 |
+
size=1
|
87 |
+
stride=1
|
88 |
+
pad=1
|
89 |
+
activation=leaky
|
90 |
+
|
91 |
+
[maxpool]
|
92 |
+
size=2
|
93 |
+
stride=2
|
94 |
+
|
95 |
+
[convolutional]
|
96 |
+
batch_normalize=1
|
97 |
+
filters=64
|
98 |
+
size=1
|
99 |
+
stride=1
|
100 |
+
pad=1
|
101 |
+
activation=leaky
|
102 |
+
|
103 |
+
[route]
|
104 |
+
layers=-2
|
105 |
+
|
106 |
+
[convolutional]
|
107 |
+
batch_normalize=1
|
108 |
+
filters=64
|
109 |
+
size=1
|
110 |
+
stride=1
|
111 |
+
pad=1
|
112 |
+
activation=leaky
|
113 |
+
|
114 |
+
[convolutional]
|
115 |
+
batch_normalize=1
|
116 |
+
filters=64
|
117 |
+
size=3
|
118 |
+
stride=1
|
119 |
+
pad=1
|
120 |
+
activation=leaky
|
121 |
+
|
122 |
+
[convolutional]
|
123 |
+
batch_normalize=1
|
124 |
+
filters=64
|
125 |
+
size=3
|
126 |
+
stride=1
|
127 |
+
pad=1
|
128 |
+
activation=leaky
|
129 |
+
|
130 |
+
[route]
|
131 |
+
layers = -5,-3,-2,-1
|
132 |
+
|
133 |
+
# 16
|
134 |
+
[convolutional]
|
135 |
+
batch_normalize=1
|
136 |
+
filters=128
|
137 |
+
size=1
|
138 |
+
stride=1
|
139 |
+
pad=1
|
140 |
+
activation=leaky
|
141 |
+
|
142 |
+
[maxpool]
|
143 |
+
size=2
|
144 |
+
stride=2
|
145 |
+
|
146 |
+
[convolutional]
|
147 |
+
batch_normalize=1
|
148 |
+
filters=128
|
149 |
+
size=1
|
150 |
+
stride=1
|
151 |
+
pad=1
|
152 |
+
activation=leaky
|
153 |
+
|
154 |
+
[route]
|
155 |
+
layers=-2
|
156 |
+
|
157 |
+
[convolutional]
|
158 |
+
batch_normalize=1
|
159 |
+
filters=128
|
160 |
+
size=1
|
161 |
+
stride=1
|
162 |
+
pad=1
|
163 |
+
activation=leaky
|
164 |
+
|
165 |
+
[convolutional]
|
166 |
+
batch_normalize=1
|
167 |
+
filters=128
|
168 |
+
size=3
|
169 |
+
stride=1
|
170 |
+
pad=1
|
171 |
+
activation=leaky
|
172 |
+
|
173 |
+
[convolutional]
|
174 |
+
batch_normalize=1
|
175 |
+
filters=128
|
176 |
+
size=3
|
177 |
+
stride=1
|
178 |
+
pad=1
|
179 |
+
activation=leaky
|
180 |
+
|
181 |
+
[route]
|
182 |
+
layers = -5,-3,-2,-1
|
183 |
+
|
184 |
+
# 24
|
185 |
+
[convolutional]
|
186 |
+
batch_normalize=1
|
187 |
+
filters=256
|
188 |
+
size=1
|
189 |
+
stride=1
|
190 |
+
pad=1
|
191 |
+
activation=leaky
|
192 |
+
|
193 |
+
[maxpool]
|
194 |
+
size=2
|
195 |
+
stride=2
|
196 |
+
|
197 |
+
[convolutional]
|
198 |
+
batch_normalize=1
|
199 |
+
filters=256
|
200 |
+
size=1
|
201 |
+
stride=1
|
202 |
+
pad=1
|
203 |
+
activation=leaky
|
204 |
+
|
205 |
+
[route]
|
206 |
+
layers=-2
|
207 |
+
|
208 |
+
[convolutional]
|
209 |
+
batch_normalize=1
|
210 |
+
filters=256
|
211 |
+
size=1
|
212 |
+
stride=1
|
213 |
+
pad=1
|
214 |
+
activation=leaky
|
215 |
+
|
216 |
+
[convolutional]
|
217 |
+
batch_normalize=1
|
218 |
+
filters=256
|
219 |
+
size=3
|
220 |
+
stride=1
|
221 |
+
pad=1
|
222 |
+
activation=leaky
|
223 |
+
|
224 |
+
[convolutional]
|
225 |
+
batch_normalize=1
|
226 |
+
filters=256
|
227 |
+
size=3
|
228 |
+
stride=1
|
229 |
+
pad=1
|
230 |
+
activation=leaky
|
231 |
+
|
232 |
+
[route]
|
233 |
+
layers = -5,-3,-2,-1
|
234 |
+
|
235 |
+
# 32
|
236 |
+
[convolutional]
|
237 |
+
batch_normalize=1
|
238 |
+
filters=512
|
239 |
+
size=1
|
240 |
+
stride=1
|
241 |
+
pad=1
|
242 |
+
activation=leaky
|
243 |
+
|
244 |
+
|
245 |
+
##################################
|
246 |
+
|
247 |
+
### SPPCSP ###
|
248 |
+
[convolutional]
|
249 |
+
batch_normalize=1
|
250 |
+
filters=256
|
251 |
+
size=1
|
252 |
+
stride=1
|
253 |
+
pad=1
|
254 |
+
activation=leaky
|
255 |
+
|
256 |
+
[route]
|
257 |
+
layers = -2
|
258 |
+
|
259 |
+
[convolutional]
|
260 |
+
batch_normalize=1
|
261 |
+
filters=256
|
262 |
+
size=1
|
263 |
+
stride=1
|
264 |
+
pad=1
|
265 |
+
activation=leaky
|
266 |
+
|
267 |
+
### SPP ###
|
268 |
+
[maxpool]
|
269 |
+
stride=1
|
270 |
+
size=5
|
271 |
+
|
272 |
+
[route]
|
273 |
+
layers=-2
|
274 |
+
|
275 |
+
[maxpool]
|
276 |
+
stride=1
|
277 |
+
size=9
|
278 |
+
|
279 |
+
[route]
|
280 |
+
layers=-4
|
281 |
+
|
282 |
+
[maxpool]
|
283 |
+
stride=1
|
284 |
+
size=13
|
285 |
+
|
286 |
+
[route]
|
287 |
+
layers=-1,-3,-5,-6
|
288 |
+
### End SPP ###
|
289 |
+
|
290 |
+
[convolutional]
|
291 |
+
batch_normalize=1
|
292 |
+
filters=256
|
293 |
+
size=1
|
294 |
+
stride=1
|
295 |
+
pad=1
|
296 |
+
activation=leaky
|
297 |
+
|
298 |
+
[route]
|
299 |
+
layers = -10,-1
|
300 |
+
|
301 |
+
# 44
|
302 |
+
[convolutional]
|
303 |
+
batch_normalize=1
|
304 |
+
filters=256
|
305 |
+
size=1
|
306 |
+
stride=1
|
307 |
+
pad=1
|
308 |
+
activation=leaky
|
309 |
+
### End SPPCSP ###
|
310 |
+
|
311 |
+
[convolutional]
|
312 |
+
batch_normalize=1
|
313 |
+
filters=128
|
314 |
+
size=1
|
315 |
+
stride=1
|
316 |
+
pad=1
|
317 |
+
activation=leaky
|
318 |
+
|
319 |
+
[upsample]
|
320 |
+
stride=2
|
321 |
+
|
322 |
+
[route]
|
323 |
+
layers = 24
|
324 |
+
|
325 |
+
[convolutional]
|
326 |
+
batch_normalize=1
|
327 |
+
filters=128
|
328 |
+
size=1
|
329 |
+
stride=1
|
330 |
+
pad=1
|
331 |
+
activation=leaky
|
332 |
+
|
333 |
+
[route]
|
334 |
+
layers = -1,-3
|
335 |
+
|
336 |
+
[convolutional]
|
337 |
+
batch_normalize=1
|
338 |
+
filters=64
|
339 |
+
size=1
|
340 |
+
stride=1
|
341 |
+
pad=1
|
342 |
+
activation=leaky
|
343 |
+
|
344 |
+
[route]
|
345 |
+
layers=-2
|
346 |
+
|
347 |
+
[convolutional]
|
348 |
+
batch_normalize=1
|
349 |
+
filters=64
|
350 |
+
size=1
|
351 |
+
stride=1
|
352 |
+
pad=1
|
353 |
+
activation=leaky
|
354 |
+
|
355 |
+
[convolutional]
|
356 |
+
batch_normalize=1
|
357 |
+
filters=64
|
358 |
+
size=3
|
359 |
+
stride=1
|
360 |
+
pad=1
|
361 |
+
activation=leaky
|
362 |
+
|
363 |
+
[convolutional]
|
364 |
+
batch_normalize=1
|
365 |
+
filters=64
|
366 |
+
size=3
|
367 |
+
stride=1
|
368 |
+
pad=1
|
369 |
+
activation=leaky
|
370 |
+
|
371 |
+
[route]
|
372 |
+
layers = -5,-3,-2,-1
|
373 |
+
|
374 |
+
# 56
|
375 |
+
[convolutional]
|
376 |
+
batch_normalize=1
|
377 |
+
filters=128
|
378 |
+
size=1
|
379 |
+
stride=1
|
380 |
+
pad=1
|
381 |
+
activation=leaky
|
382 |
+
|
383 |
+
[convolutional]
|
384 |
+
batch_normalize=1
|
385 |
+
filters=64
|
386 |
+
size=1
|
387 |
+
stride=1
|
388 |
+
pad=1
|
389 |
+
activation=leaky
|
390 |
+
|
391 |
+
[upsample]
|
392 |
+
stride=2
|
393 |
+
|
394 |
+
[route]
|
395 |
+
layers = 16
|
396 |
+
|
397 |
+
[convolutional]
|
398 |
+
batch_normalize=1
|
399 |
+
filters=64
|
400 |
+
size=1
|
401 |
+
stride=1
|
402 |
+
pad=1
|
403 |
+
activation=leaky
|
404 |
+
|
405 |
+
[route]
|
406 |
+
layers = -1,-3
|
407 |
+
|
408 |
+
[convolutional]
|
409 |
+
batch_normalize=1
|
410 |
+
filters=32
|
411 |
+
size=1
|
412 |
+
stride=1
|
413 |
+
pad=1
|
414 |
+
activation=leaky
|
415 |
+
|
416 |
+
[route]
|
417 |
+
layers=-2
|
418 |
+
|
419 |
+
[convolutional]
|
420 |
+
batch_normalize=1
|
421 |
+
filters=32
|
422 |
+
size=1
|
423 |
+
stride=1
|
424 |
+
pad=1
|
425 |
+
activation=leaky
|
426 |
+
|
427 |
+
[convolutional]
|
428 |
+
batch_normalize=1
|
429 |
+
filters=32
|
430 |
+
size=3
|
431 |
+
stride=1
|
432 |
+
pad=1
|
433 |
+
activation=leaky
|
434 |
+
|
435 |
+
[convolutional]
|
436 |
+
batch_normalize=1
|
437 |
+
filters=32
|
438 |
+
size=3
|
439 |
+
stride=1
|
440 |
+
pad=1
|
441 |
+
activation=leaky
|
442 |
+
|
443 |
+
[route]
|
444 |
+
layers = -5,-3,-2,-1
|
445 |
+
|
446 |
+
# 68
|
447 |
+
[convolutional]
|
448 |
+
batch_normalize=1
|
449 |
+
filters=64
|
450 |
+
size=1
|
451 |
+
stride=1
|
452 |
+
pad=1
|
453 |
+
activation=leaky
|
454 |
+
|
455 |
+
##########################
|
456 |
+
|
457 |
+
[convolutional]
|
458 |
+
batch_normalize=1
|
459 |
+
size=3
|
460 |
+
stride=2
|
461 |
+
pad=1
|
462 |
+
filters=128
|
463 |
+
activation=leaky
|
464 |
+
|
465 |
+
[route]
|
466 |
+
layers = -1,56
|
467 |
+
|
468 |
+
[convolutional]
|
469 |
+
batch_normalize=1
|
470 |
+
filters=64
|
471 |
+
size=1
|
472 |
+
stride=1
|
473 |
+
pad=1
|
474 |
+
activation=leaky
|
475 |
+
|
476 |
+
[route]
|
477 |
+
layers=-2
|
478 |
+
|
479 |
+
[convolutional]
|
480 |
+
batch_normalize=1
|
481 |
+
filters=64
|
482 |
+
size=1
|
483 |
+
stride=1
|
484 |
+
pad=1
|
485 |
+
activation=leaky
|
486 |
+
|
487 |
+
[convolutional]
|
488 |
+
batch_normalize=1
|
489 |
+
filters=64
|
490 |
+
size=3
|
491 |
+
stride=1
|
492 |
+
pad=1
|
493 |
+
activation=leaky
|
494 |
+
|
495 |
+
[convolutional]
|
496 |
+
batch_normalize=1
|
497 |
+
filters=64
|
498 |
+
size=3
|
499 |
+
stride=1
|
500 |
+
pad=1
|
501 |
+
activation=leaky
|
502 |
+
|
503 |
+
[route]
|
504 |
+
layers = -5,-3,-2,-1
|
505 |
+
|
506 |
+
# 77
|
507 |
+
[convolutional]
|
508 |
+
batch_normalize=1
|
509 |
+
filters=128
|
510 |
+
size=1
|
511 |
+
stride=1
|
512 |
+
pad=1
|
513 |
+
activation=leaky
|
514 |
+
|
515 |
+
[convolutional]
|
516 |
+
batch_normalize=1
|
517 |
+
size=3
|
518 |
+
stride=2
|
519 |
+
pad=1
|
520 |
+
filters=256
|
521 |
+
activation=leaky
|
522 |
+
|
523 |
+
[route]
|
524 |
+
layers = -1,44
|
525 |
+
|
526 |
+
[convolutional]
|
527 |
+
batch_normalize=1
|
528 |
+
filters=128
|
529 |
+
size=1
|
530 |
+
stride=1
|
531 |
+
pad=1
|
532 |
+
activation=leaky
|
533 |
+
|
534 |
+
[route]
|
535 |
+
layers=-2
|
536 |
+
|
537 |
+
[convolutional]
|
538 |
+
batch_normalize=1
|
539 |
+
filters=128
|
540 |
+
size=1
|
541 |
+
stride=1
|
542 |
+
pad=1
|
543 |
+
activation=leaky
|
544 |
+
|
545 |
+
[convolutional]
|
546 |
+
batch_normalize=1
|
547 |
+
filters=128
|
548 |
+
size=3
|
549 |
+
stride=1
|
550 |
+
pad=1
|
551 |
+
activation=leaky
|
552 |
+
|
553 |
+
[convolutional]
|
554 |
+
batch_normalize=1
|
555 |
+
filters=128
|
556 |
+
size=3
|
557 |
+
stride=1
|
558 |
+
pad=1
|
559 |
+
activation=leaky
|
560 |
+
|
561 |
+
[route]
|
562 |
+
layers = -5,-3,-2,-1
|
563 |
+
|
564 |
+
# 86
|
565 |
+
[convolutional]
|
566 |
+
batch_normalize=1
|
567 |
+
filters=256
|
568 |
+
size=1
|
569 |
+
stride=1
|
570 |
+
pad=1
|
571 |
+
activation=leaky
|
572 |
+
|
573 |
+
#############################
|
574 |
+
|
575 |
+
# ============ End of Neck ============ #
|
576 |
+
|
577 |
+
# ============ Head ============ #
|
578 |
+
|
579 |
+
|
580 |
+
# P3
|
581 |
+
[route]
|
582 |
+
layers = 68
|
583 |
+
|
584 |
+
[convolutional]
|
585 |
+
batch_normalize=1
|
586 |
+
size=3
|
587 |
+
stride=1
|
588 |
+
pad=1
|
589 |
+
filters=128
|
590 |
+
activation=leaky
|
591 |
+
|
592 |
+
[convolutional]
|
593 |
+
size=1
|
594 |
+
stride=1
|
595 |
+
pad=1
|
596 |
+
filters=255
|
597 |
+
#activation=linear
|
598 |
+
activation=logistic
|
599 |
+
|
600 |
+
[yolo]
|
601 |
+
mask = 0,1,2
|
602 |
+
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
|
603 |
+
classes=80
|
604 |
+
num=9
|
605 |
+
jitter=.1
|
606 |
+
scale_x_y = 2.0
|
607 |
+
objectness_smooth=1
|
608 |
+
ignore_thresh = .7
|
609 |
+
truth_thresh = 1
|
610 |
+
#random=1
|
611 |
+
resize=1.5
|
612 |
+
iou_thresh=0.2
|
613 |
+
iou_normalizer=0.05
|
614 |
+
cls_normalizer=0.5
|
615 |
+
obj_normalizer=1.0
|
616 |
+
iou_loss=ciou
|
617 |
+
nms_kind=diounms
|
618 |
+
beta_nms=0.6
|
619 |
+
new_coords=1
|
620 |
+
max_delta=2
|
621 |
+
|
622 |
+
|
623 |
+
# P4
|
624 |
+
[route]
|
625 |
+
layers = 77
|
626 |
+
|
627 |
+
[convolutional]
|
628 |
+
batch_normalize=1
|
629 |
+
size=3
|
630 |
+
stride=1
|
631 |
+
pad=1
|
632 |
+
filters=256
|
633 |
+
activation=leaky
|
634 |
+
|
635 |
+
[convolutional]
|
636 |
+
size=1
|
637 |
+
stride=1
|
638 |
+
pad=1
|
639 |
+
filters=255
|
640 |
+
#activation=linear
|
641 |
+
activation=logistic
|
642 |
+
|
643 |
+
[yolo]
|
644 |
+
mask = 3,4,5
|
645 |
+
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
|
646 |
+
classes=80
|
647 |
+
num=9
|
648 |
+
jitter=.1
|
649 |
+
scale_x_y = 2.0
|
650 |
+
objectness_smooth=1
|
651 |
+
ignore_thresh = .7
|
652 |
+
truth_thresh = 1
|
653 |
+
#random=1
|
654 |
+
resize=1.5
|
655 |
+
iou_thresh=0.2
|
656 |
+
iou_normalizer=0.05
|
657 |
+
cls_normalizer=0.5
|
658 |
+
obj_normalizer=1.0
|
659 |
+
iou_loss=ciou
|
660 |
+
nms_kind=diounms
|
661 |
+
beta_nms=0.6
|
662 |
+
new_coords=1
|
663 |
+
max_delta=2
|
664 |
+
|
665 |
+
|
666 |
+
# P5
|
667 |
+
[route]
|
668 |
+
layers = 86
|
669 |
+
|
670 |
+
[convolutional]
|
671 |
+
batch_normalize=1
|
672 |
+
size=3
|
673 |
+
stride=1
|
674 |
+
pad=1
|
675 |
+
filters=512
|
676 |
+
activation=leaky
|
677 |
+
|
678 |
+
[convolutional]
|
679 |
+
size=1
|
680 |
+
stride=1
|
681 |
+
pad=1
|
682 |
+
filters=255
|
683 |
+
#activation=linear
|
684 |
+
activation=logistic
|
685 |
+
|
686 |
+
[yolo]
|
687 |
+
mask = 6,7,8
|
688 |
+
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
|
689 |
+
classes=80
|
690 |
+
num=9
|
691 |
+
jitter=.1
|
692 |
+
scale_x_y = 2.0
|
693 |
+
objectness_smooth=1
|
694 |
+
ignore_thresh = .7
|
695 |
+
truth_thresh = 1
|
696 |
+
#random=1
|
697 |
+
resize=1.5
|
698 |
+
iou_thresh=0.2
|
699 |
+
iou_normalizer=0.05
|
700 |
+
cls_normalizer=0.5
|
701 |
+
obj_normalizer=1.0
|
702 |
+
iou_loss=ciou
|
703 |
+
nms_kind=diounms
|
704 |
+
beta_nms=0.6
|
705 |
+
new_coords=1
|
706 |
+
max_delta=2
|
testspace/models/yolov7/yolov7-tiny.weights
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:06be302b1564f2e2c3e1db1f5ec02477ac05d0ae82405a8c1b2b8e4111101b66
|
3 |
+
size 24967560
|
testspace/models/yolov7/yolov7.cfg
ADDED
@@ -0,0 +1,1024 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[net]
|
2 |
+
# Testing
|
3 |
+
#batch=1
|
4 |
+
#subdivisions=1
|
5 |
+
# Training
|
6 |
+
batch=8
|
7 |
+
subdivisions=1
|
8 |
+
width=640
|
9 |
+
height=640
|
10 |
+
channels=3
|
11 |
+
momentum=0.9
|
12 |
+
decay=0.0005
|
13 |
+
angle=0
|
14 |
+
saturation = 1.5
|
15 |
+
exposure = 1.5
|
16 |
+
hue=.1
|
17 |
+
|
18 |
+
learning_rate=0.00261
|
19 |
+
burn_in=1000
|
20 |
+
|
21 |
+
max_batches = 2000200
|
22 |
+
policy=steps
|
23 |
+
steps=1600000,1800000
|
24 |
+
scales=.1,.1
|
25 |
+
|
26 |
+
# 0
|
27 |
+
[convolutional]
|
28 |
+
batch_normalize=1
|
29 |
+
filters=32
|
30 |
+
size=3
|
31 |
+
stride=1
|
32 |
+
pad=1
|
33 |
+
activation=swish
|
34 |
+
|
35 |
+
|
36 |
+
# 1
|
37 |
+
[convolutional]
|
38 |
+
batch_normalize=1
|
39 |
+
filters=64
|
40 |
+
size=3
|
41 |
+
stride=2
|
42 |
+
pad=1
|
43 |
+
activation=swish
|
44 |
+
|
45 |
+
[convolutional]
|
46 |
+
batch_normalize=1
|
47 |
+
filters=64
|
48 |
+
size=3
|
49 |
+
stride=1
|
50 |
+
pad=1
|
51 |
+
activation=swish
|
52 |
+
|
53 |
+
|
54 |
+
# 3
|
55 |
+
[convolutional]
|
56 |
+
batch_normalize=1
|
57 |
+
filters=128
|
58 |
+
size=3
|
59 |
+
stride=2
|
60 |
+
pad=1
|
61 |
+
activation=swish
|
62 |
+
|
63 |
+
[convolutional]
|
64 |
+
batch_normalize=1
|
65 |
+
filters=64
|
66 |
+
size=1
|
67 |
+
stride=1
|
68 |
+
pad=1
|
69 |
+
activation=swish
|
70 |
+
|
71 |
+
[route]
|
72 |
+
layers=-2
|
73 |
+
|
74 |
+
[convolutional]
|
75 |
+
batch_normalize=1
|
76 |
+
filters=64
|
77 |
+
size=1
|
78 |
+
stride=1
|
79 |
+
pad=1
|
80 |
+
activation=swish
|
81 |
+
|
82 |
+
[convolutional]
|
83 |
+
batch_normalize=1
|
84 |
+
filters=64
|
85 |
+
size=3
|
86 |
+
stride=1
|
87 |
+
pad=1
|
88 |
+
activation=swish
|
89 |
+
|
90 |
+
[convolutional]
|
91 |
+
batch_normalize=1
|
92 |
+
filters=64
|
93 |
+
size=3
|
94 |
+
stride=1
|
95 |
+
pad=1
|
96 |
+
activation=swish
|
97 |
+
|
98 |
+
[convolutional]
|
99 |
+
batch_normalize=1
|
100 |
+
filters=64
|
101 |
+
size=3
|
102 |
+
stride=1
|
103 |
+
pad=1
|
104 |
+
activation=swish
|
105 |
+
|
106 |
+
[convolutional]
|
107 |
+
batch_normalize=1
|
108 |
+
filters=64
|
109 |
+
size=3
|
110 |
+
stride=1
|
111 |
+
pad=1
|
112 |
+
activation=swish
|
113 |
+
|
114 |
+
[route]
|
115 |
+
layers = -1,-3,-5,-7
|
116 |
+
|
117 |
+
# 12
|
118 |
+
[convolutional]
|
119 |
+
batch_normalize=1
|
120 |
+
filters=256
|
121 |
+
size=1
|
122 |
+
stride=1
|
123 |
+
pad=1
|
124 |
+
activation=swish
|
125 |
+
|
126 |
+
|
127 |
+
[maxpool]
|
128 |
+
size=2
|
129 |
+
stride=2
|
130 |
+
|
131 |
+
[convolutional]
|
132 |
+
batch_normalize=1
|
133 |
+
filters=128
|
134 |
+
size=1
|
135 |
+
stride=1
|
136 |
+
pad=1
|
137 |
+
activation=swish
|
138 |
+
|
139 |
+
[route]
|
140 |
+
layers=-3
|
141 |
+
|
142 |
+
[convolutional]
|
143 |
+
batch_normalize=1
|
144 |
+
filters=128
|
145 |
+
size=1
|
146 |
+
stride=1
|
147 |
+
pad=1
|
148 |
+
activation=swish
|
149 |
+
|
150 |
+
[convolutional]
|
151 |
+
batch_normalize=1
|
152 |
+
filters=128
|
153 |
+
size=3
|
154 |
+
stride=2
|
155 |
+
pad=1
|
156 |
+
activation=swish
|
157 |
+
|
158 |
+
# 18
|
159 |
+
[route]
|
160 |
+
layers = -1,-4
|
161 |
+
|
162 |
+
[convolutional]
|
163 |
+
batch_normalize=1
|
164 |
+
filters=128
|
165 |
+
size=1
|
166 |
+
stride=1
|
167 |
+
pad=1
|
168 |
+
activation=swish
|
169 |
+
|
170 |
+
[route]
|
171 |
+
layers=-2
|
172 |
+
|
173 |
+
[convolutional]
|
174 |
+
batch_normalize=1
|
175 |
+
filters=128
|
176 |
+
size=1
|
177 |
+
stride=1
|
178 |
+
pad=1
|
179 |
+
activation=swish
|
180 |
+
|
181 |
+
[convolutional]
|
182 |
+
batch_normalize=1
|
183 |
+
filters=128
|
184 |
+
size=3
|
185 |
+
stride=1
|
186 |
+
pad=1
|
187 |
+
activation=swish
|
188 |
+
|
189 |
+
[convolutional]
|
190 |
+
batch_normalize=1
|
191 |
+
filters=128
|
192 |
+
size=3
|
193 |
+
stride=1
|
194 |
+
pad=1
|
195 |
+
activation=swish
|
196 |
+
|
197 |
+
[convolutional]
|
198 |
+
batch_normalize=1
|
199 |
+
filters=128
|
200 |
+
size=3
|
201 |
+
stride=1
|
202 |
+
pad=1
|
203 |
+
activation=swish
|
204 |
+
|
205 |
+
[convolutional]
|
206 |
+
batch_normalize=1
|
207 |
+
filters=128
|
208 |
+
size=3
|
209 |
+
stride=1
|
210 |
+
pad=1
|
211 |
+
activation=swish
|
212 |
+
|
213 |
+
[route]
|
214 |
+
layers = -1,-3,-5,-7
|
215 |
+
|
216 |
+
# 27
|
217 |
+
[convolutional]
|
218 |
+
batch_normalize=1
|
219 |
+
filters=512
|
220 |
+
size=1
|
221 |
+
stride=1
|
222 |
+
pad=1
|
223 |
+
activation=swish
|
224 |
+
|
225 |
+
|
226 |
+
[maxpool]
|
227 |
+
size=2
|
228 |
+
stride=2
|
229 |
+
|
230 |
+
[convolutional]
|
231 |
+
batch_normalize=1
|
232 |
+
filters=256
|
233 |
+
size=1
|
234 |
+
stride=1
|
235 |
+
pad=1
|
236 |
+
activation=swish
|
237 |
+
|
238 |
+
[route]
|
239 |
+
layers=-3
|
240 |
+
|
241 |
+
[convolutional]
|
242 |
+
batch_normalize=1
|
243 |
+
filters=256
|
244 |
+
size=1
|
245 |
+
stride=1
|
246 |
+
pad=1
|
247 |
+
activation=swish
|
248 |
+
|
249 |
+
[convolutional]
|
250 |
+
batch_normalize=1
|
251 |
+
filters=256
|
252 |
+
size=3
|
253 |
+
stride=2
|
254 |
+
pad=1
|
255 |
+
activation=swish
|
256 |
+
|
257 |
+
# 33
|
258 |
+
[route]
|
259 |
+
layers = -1,-4
|
260 |
+
|
261 |
+
[convolutional]
|
262 |
+
batch_normalize=1
|
263 |
+
filters=256
|
264 |
+
size=1
|
265 |
+
stride=1
|
266 |
+
pad=1
|
267 |
+
activation=swish
|
268 |
+
|
269 |
+
[route]
|
270 |
+
layers=-2
|
271 |
+
|
272 |
+
[convolutional]
|
273 |
+
batch_normalize=1
|
274 |
+
filters=256
|
275 |
+
size=1
|
276 |
+
stride=1
|
277 |
+
pad=1
|
278 |
+
activation=swish
|
279 |
+
|
280 |
+
[convolutional]
|
281 |
+
batch_normalize=1
|
282 |
+
filters=256
|
283 |
+
size=3
|
284 |
+
stride=1
|
285 |
+
pad=1
|
286 |
+
activation=swish
|
287 |
+
|
288 |
+
[convolutional]
|
289 |
+
batch_normalize=1
|
290 |
+
filters=256
|
291 |
+
size=3
|
292 |
+
stride=1
|
293 |
+
pad=1
|
294 |
+
activation=swish
|
295 |
+
|
296 |
+
[convolutional]
|
297 |
+
batch_normalize=1
|
298 |
+
filters=256
|
299 |
+
size=3
|
300 |
+
stride=1
|
301 |
+
pad=1
|
302 |
+
activation=swish
|
303 |
+
|
304 |
+
[convolutional]
|
305 |
+
batch_normalize=1
|
306 |
+
filters=256
|
307 |
+
size=3
|
308 |
+
stride=1
|
309 |
+
pad=1
|
310 |
+
activation=swish
|
311 |
+
|
312 |
+
[route]
|
313 |
+
layers = -1,-3,-5,-7
|
314 |
+
|
315 |
+
# 42
|
316 |
+
[convolutional]
|
317 |
+
batch_normalize=1
|
318 |
+
filters=1024
|
319 |
+
size=1
|
320 |
+
stride=1
|
321 |
+
pad=1
|
322 |
+
activation=swish
|
323 |
+
|
324 |
+
|
325 |
+
[maxpool]
|
326 |
+
size=2
|
327 |
+
stride=2
|
328 |
+
|
329 |
+
[convolutional]
|
330 |
+
batch_normalize=1
|
331 |
+
filters=512
|
332 |
+
size=1
|
333 |
+
stride=1
|
334 |
+
pad=1
|
335 |
+
activation=swish
|
336 |
+
|
337 |
+
[route]
|
338 |
+
layers=-3
|
339 |
+
|
340 |
+
[convolutional]
|
341 |
+
batch_normalize=1
|
342 |
+
filters=512
|
343 |
+
size=1
|
344 |
+
stride=1
|
345 |
+
pad=1
|
346 |
+
activation=swish
|
347 |
+
|
348 |
+
[convolutional]
|
349 |
+
batch_normalize=1
|
350 |
+
filters=512
|
351 |
+
size=3
|
352 |
+
stride=2
|
353 |
+
pad=1
|
354 |
+
activation=swish
|
355 |
+
|
356 |
+
# 48
|
357 |
+
[route]
|
358 |
+
layers = -1,-4
|
359 |
+
|
360 |
+
[convolutional]
|
361 |
+
batch_normalize=1
|
362 |
+
filters=256
|
363 |
+
size=1
|
364 |
+
stride=1
|
365 |
+
pad=1
|
366 |
+
activation=swish
|
367 |
+
|
368 |
+
[route]
|
369 |
+
layers=-2
|
370 |
+
|
371 |
+
[convolutional]
|
372 |
+
batch_normalize=1
|
373 |
+
filters=256
|
374 |
+
size=1
|
375 |
+
stride=1
|
376 |
+
pad=1
|
377 |
+
activation=swish
|
378 |
+
|
379 |
+
[convolutional]
|
380 |
+
batch_normalize=1
|
381 |
+
filters=256
|
382 |
+
size=3
|
383 |
+
stride=1
|
384 |
+
pad=1
|
385 |
+
activation=swish
|
386 |
+
|
387 |
+
[convolutional]
|
388 |
+
batch_normalize=1
|
389 |
+
filters=256
|
390 |
+
size=3
|
391 |
+
stride=1
|
392 |
+
pad=1
|
393 |
+
activation=swish
|
394 |
+
|
395 |
+
[convolutional]
|
396 |
+
batch_normalize=1
|
397 |
+
filters=256
|
398 |
+
size=3
|
399 |
+
stride=1
|
400 |
+
pad=1
|
401 |
+
activation=swish
|
402 |
+
|
403 |
+
[convolutional]
|
404 |
+
batch_normalize=1
|
405 |
+
filters=256
|
406 |
+
size=3
|
407 |
+
stride=1
|
408 |
+
pad=1
|
409 |
+
activation=swish
|
410 |
+
|
411 |
+
[route]
|
412 |
+
layers = -1,-3,-5,-7
|
413 |
+
|
414 |
+
# 57
|
415 |
+
[convolutional]
|
416 |
+
batch_normalize=1
|
417 |
+
filters=1024
|
418 |
+
size=1
|
419 |
+
stride=1
|
420 |
+
pad=1
|
421 |
+
activation=swish
|
422 |
+
|
423 |
+
##################################
|
424 |
+
|
425 |
+
### SPPCSP ###
|
426 |
+
[convolutional]
|
427 |
+
batch_normalize=1
|
428 |
+
filters=512
|
429 |
+
size=1
|
430 |
+
stride=1
|
431 |
+
pad=1
|
432 |
+
activation=swish
|
433 |
+
|
434 |
+
[route]
|
435 |
+
layers = -2
|
436 |
+
|
437 |
+
[convolutional]
|
438 |
+
batch_normalize=1
|
439 |
+
filters=512
|
440 |
+
size=1
|
441 |
+
stride=1
|
442 |
+
pad=1
|
443 |
+
activation=swish
|
444 |
+
|
445 |
+
[convolutional]
|
446 |
+
batch_normalize=1
|
447 |
+
size=3
|
448 |
+
stride=1
|
449 |
+
pad=1
|
450 |
+
filters=512
|
451 |
+
activation=swish
|
452 |
+
|
453 |
+
[convolutional]
|
454 |
+
batch_normalize=1
|
455 |
+
filters=512
|
456 |
+
size=1
|
457 |
+
stride=1
|
458 |
+
pad=1
|
459 |
+
activation=swish
|
460 |
+
|
461 |
+
### SPP ###
|
462 |
+
[maxpool]
|
463 |
+
stride=1
|
464 |
+
size=5
|
465 |
+
|
466 |
+
[route]
|
467 |
+
layers=-2
|
468 |
+
|
469 |
+
[maxpool]
|
470 |
+
stride=1
|
471 |
+
size=9
|
472 |
+
|
473 |
+
[route]
|
474 |
+
layers=-4
|
475 |
+
|
476 |
+
[maxpool]
|
477 |
+
stride=1
|
478 |
+
size=13
|
479 |
+
|
480 |
+
[route]
|
481 |
+
layers=-6,-5,-3,-1
|
482 |
+
### End SPP ###
|
483 |
+
|
484 |
+
[convolutional]
|
485 |
+
batch_normalize=1
|
486 |
+
filters=512
|
487 |
+
size=1
|
488 |
+
stride=1
|
489 |
+
pad=1
|
490 |
+
activation=swish
|
491 |
+
|
492 |
+
[convolutional]
|
493 |
+
batch_normalize=1
|
494 |
+
size=3
|
495 |
+
stride=1
|
496 |
+
pad=1
|
497 |
+
filters=512
|
498 |
+
activation=swish
|
499 |
+
|
500 |
+
[route]
|
501 |
+
layers = -1, -13
|
502 |
+
|
503 |
+
# 72
|
504 |
+
[convolutional]
|
505 |
+
batch_normalize=1
|
506 |
+
filters=512
|
507 |
+
size=1
|
508 |
+
stride=1
|
509 |
+
pad=1
|
510 |
+
activation=swish
|
511 |
+
### End SPPCSP ###
|
512 |
+
|
513 |
+
|
514 |
+
[convolutional]
|
515 |
+
batch_normalize=1
|
516 |
+
filters=256
|
517 |
+
size=1
|
518 |
+
stride=1
|
519 |
+
pad=1
|
520 |
+
activation=swish
|
521 |
+
|
522 |
+
[upsample]
|
523 |
+
stride=2
|
524 |
+
|
525 |
+
[route]
|
526 |
+
layers = 42
|
527 |
+
|
528 |
+
[convolutional]
|
529 |
+
batch_normalize=1
|
530 |
+
filters=256
|
531 |
+
size=1
|
532 |
+
stride=1
|
533 |
+
pad=1
|
534 |
+
activation=swish
|
535 |
+
|
536 |
+
[route]
|
537 |
+
layers = -1,-3
|
538 |
+
|
539 |
+
|
540 |
+
[convolutional]
|
541 |
+
batch_normalize=1
|
542 |
+
filters=256
|
543 |
+
size=1
|
544 |
+
stride=1
|
545 |
+
pad=1
|
546 |
+
activation=swish
|
547 |
+
|
548 |
+
[route]
|
549 |
+
layers=-2
|
550 |
+
|
551 |
+
[convolutional]
|
552 |
+
batch_normalize=1
|
553 |
+
filters=256
|
554 |
+
size=1
|
555 |
+
stride=1
|
556 |
+
pad=1
|
557 |
+
activation=swish
|
558 |
+
|
559 |
+
[convolutional]
|
560 |
+
batch_normalize=1
|
561 |
+
filters=128
|
562 |
+
size=3
|
563 |
+
stride=1
|
564 |
+
pad=1
|
565 |
+
activation=swish
|
566 |
+
|
567 |
+
[convolutional]
|
568 |
+
batch_normalize=1
|
569 |
+
filters=128
|
570 |
+
size=3
|
571 |
+
stride=1
|
572 |
+
pad=1
|
573 |
+
activation=swish
|
574 |
+
|
575 |
+
[convolutional]
|
576 |
+
batch_normalize=1
|
577 |
+
filters=128
|
578 |
+
size=3
|
579 |
+
stride=1
|
580 |
+
pad=1
|
581 |
+
activation=swish
|
582 |
+
|
583 |
+
[convolutional]
|
584 |
+
batch_normalize=1
|
585 |
+
filters=128
|
586 |
+
size=3
|
587 |
+
stride=1
|
588 |
+
pad=1
|
589 |
+
activation=swish
|
590 |
+
|
591 |
+
[route]
|
592 |
+
layers = -1,-2,-3,-4,-5,-7
|
593 |
+
|
594 |
+
# 86
|
595 |
+
[convolutional]
|
596 |
+
batch_normalize=1
|
597 |
+
filters=256
|
598 |
+
size=1
|
599 |
+
stride=1
|
600 |
+
pad=1
|
601 |
+
activation=swish
|
602 |
+
|
603 |
+
|
604 |
+
[convolutional]
|
605 |
+
batch_normalize=1
|
606 |
+
filters=128
|
607 |
+
size=1
|
608 |
+
stride=1
|
609 |
+
pad=1
|
610 |
+
activation=swish
|
611 |
+
|
612 |
+
[upsample]
|
613 |
+
stride=2
|
614 |
+
|
615 |
+
[route]
|
616 |
+
layers = 27
|
617 |
+
|
618 |
+
[convolutional]
|
619 |
+
batch_normalize=1
|
620 |
+
filters=128
|
621 |
+
size=1
|
622 |
+
stride=1
|
623 |
+
pad=1
|
624 |
+
activation=swish
|
625 |
+
|
626 |
+
[route]
|
627 |
+
layers = -1,-3
|
628 |
+
|
629 |
+
|
630 |
+
[convolutional]
|
631 |
+
batch_normalize=1
|
632 |
+
filters=128
|
633 |
+
size=1
|
634 |
+
stride=1
|
635 |
+
pad=1
|
636 |
+
activation=swish
|
637 |
+
|
638 |
+
[route]
|
639 |
+
layers=-2
|
640 |
+
|
641 |
+
[convolutional]
|
642 |
+
batch_normalize=1
|
643 |
+
filters=128
|
644 |
+
size=1
|
645 |
+
stride=1
|
646 |
+
pad=1
|
647 |
+
activation=swish
|
648 |
+
|
649 |
+
[convolutional]
|
650 |
+
batch_normalize=1
|
651 |
+
filters=64
|
652 |
+
size=3
|
653 |
+
stride=1
|
654 |
+
pad=1
|
655 |
+
activation=swish
|
656 |
+
|
657 |
+
[convolutional]
|
658 |
+
batch_normalize=1
|
659 |
+
filters=64
|
660 |
+
size=3
|
661 |
+
stride=1
|
662 |
+
pad=1
|
663 |
+
activation=swish
|
664 |
+
|
665 |
+
[convolutional]
|
666 |
+
batch_normalize=1
|
667 |
+
filters=64
|
668 |
+
size=3
|
669 |
+
stride=1
|
670 |
+
pad=1
|
671 |
+
activation=swish
|
672 |
+
|
673 |
+
[convolutional]
|
674 |
+
batch_normalize=1
|
675 |
+
filters=64
|
676 |
+
size=3
|
677 |
+
stride=1
|
678 |
+
pad=1
|
679 |
+
activation=swish
|
680 |
+
|
681 |
+
[route]
|
682 |
+
layers = -1,-2,-3,-4,-5,-7
|
683 |
+
|
684 |
+
# 100
|
685 |
+
[convolutional]
|
686 |
+
batch_normalize=1
|
687 |
+
filters=128
|
688 |
+
size=1
|
689 |
+
stride=1
|
690 |
+
pad=1
|
691 |
+
activation=swish
|
692 |
+
|
693 |
+
|
694 |
+
[maxpool]
|
695 |
+
size=2
|
696 |
+
stride=2
|
697 |
+
|
698 |
+
[convolutional]
|
699 |
+
batch_normalize=1
|
700 |
+
filters=128
|
701 |
+
size=1
|
702 |
+
stride=1
|
703 |
+
pad=1
|
704 |
+
activation=swish
|
705 |
+
|
706 |
+
[route]
|
707 |
+
layers=-3
|
708 |
+
|
709 |
+
[convolutional]
|
710 |
+
batch_normalize=1
|
711 |
+
filters=128
|
712 |
+
size=1
|
713 |
+
stride=1
|
714 |
+
pad=1
|
715 |
+
activation=swish
|
716 |
+
|
717 |
+
[convolutional]
|
718 |
+
batch_normalize=1
|
719 |
+
filters=128
|
720 |
+
size=3
|
721 |
+
stride=2
|
722 |
+
pad=1
|
723 |
+
activation=swish
|
724 |
+
|
725 |
+
[route]
|
726 |
+
layers = -1,-4,86
|
727 |
+
|
728 |
+
|
729 |
+
[convolutional]
|
730 |
+
batch_normalize=1
|
731 |
+
filters=256
|
732 |
+
size=1
|
733 |
+
stride=1
|
734 |
+
pad=1
|
735 |
+
activation=swish
|
736 |
+
|
737 |
+
[route]
|
738 |
+
layers=-2
|
739 |
+
|
740 |
+
[convolutional]
|
741 |
+
batch_normalize=1
|
742 |
+
filters=256
|
743 |
+
size=1
|
744 |
+
stride=1
|
745 |
+
pad=1
|
746 |
+
activation=swish
|
747 |
+
|
748 |
+
[convolutional]
|
749 |
+
batch_normalize=1
|
750 |
+
filters=128
|
751 |
+
size=3
|
752 |
+
stride=1
|
753 |
+
pad=1
|
754 |
+
activation=swish
|
755 |
+
|
756 |
+
[convolutional]
|
757 |
+
batch_normalize=1
|
758 |
+
filters=128
|
759 |
+
size=3
|
760 |
+
stride=1
|
761 |
+
pad=1
|
762 |
+
activation=swish
|
763 |
+
|
764 |
+
[convolutional]
|
765 |
+
batch_normalize=1
|
766 |
+
filters=128
|
767 |
+
size=3
|
768 |
+
stride=1
|
769 |
+
pad=1
|
770 |
+
activation=swish
|
771 |
+
|
772 |
+
[convolutional]
|
773 |
+
batch_normalize=1
|
774 |
+
filters=128
|
775 |
+
size=3
|
776 |
+
stride=1
|
777 |
+
pad=1
|
778 |
+
activation=swish
|
779 |
+
|
780 |
+
[route]
|
781 |
+
layers = -1,-2,-3,-4,-5,-7
|
782 |
+
|
783 |
+
# 115
|
784 |
+
[convolutional]
|
785 |
+
batch_normalize=1
|
786 |
+
filters=256
|
787 |
+
size=1
|
788 |
+
stride=1
|
789 |
+
pad=1
|
790 |
+
activation=swish
|
791 |
+
|
792 |
+
|
793 |
+
[maxpool]
|
794 |
+
size=2
|
795 |
+
stride=2
|
796 |
+
|
797 |
+
[convolutional]
|
798 |
+
batch_normalize=1
|
799 |
+
filters=256
|
800 |
+
size=1
|
801 |
+
stride=1
|
802 |
+
pad=1
|
803 |
+
activation=swish
|
804 |
+
|
805 |
+
[route]
|
806 |
+
layers=-3
|
807 |
+
|
808 |
+
[convolutional]
|
809 |
+
batch_normalize=1
|
810 |
+
filters=256
|
811 |
+
size=1
|
812 |
+
stride=1
|
813 |
+
pad=1
|
814 |
+
activation=swish
|
815 |
+
|
816 |
+
[convolutional]
|
817 |
+
batch_normalize=1
|
818 |
+
filters=256
|
819 |
+
size=3
|
820 |
+
stride=2
|
821 |
+
pad=1
|
822 |
+
activation=swish
|
823 |
+
|
824 |
+
[route]
|
825 |
+
layers = -1,-4,72
|
826 |
+
|
827 |
+
|
828 |
+
[convolutional]
|
829 |
+
batch_normalize=1
|
830 |
+
filters=512
|
831 |
+
size=1
|
832 |
+
stride=1
|
833 |
+
pad=1
|
834 |
+
activation=swish
|
835 |
+
|
836 |
+
[route]
|
837 |
+
layers=-2
|
838 |
+
|
839 |
+
[convolutional]
|
840 |
+
batch_normalize=1
|
841 |
+
filters=512
|
842 |
+
size=1
|
843 |
+
stride=1
|
844 |
+
pad=1
|
845 |
+
activation=swish
|
846 |
+
|
847 |
+
[convolutional]
|
848 |
+
batch_normalize=1
|
849 |
+
filters=256
|
850 |
+
size=3
|
851 |
+
stride=1
|
852 |
+
pad=1
|
853 |
+
activation=swish
|
854 |
+
|
855 |
+
[convolutional]
|
856 |
+
batch_normalize=1
|
857 |
+
filters=256
|
858 |
+
size=3
|
859 |
+
stride=1
|
860 |
+
pad=1
|
861 |
+
activation=swish
|
862 |
+
|
863 |
+
[convolutional]
|
864 |
+
batch_normalize=1
|
865 |
+
filters=256
|
866 |
+
size=3
|
867 |
+
stride=1
|
868 |
+
pad=1
|
869 |
+
activation=swish
|
870 |
+
|
871 |
+
[convolutional]
|
872 |
+
batch_normalize=1
|
873 |
+
filters=256
|
874 |
+
size=3
|
875 |
+
stride=1
|
876 |
+
pad=1
|
877 |
+
activation=swish
|
878 |
+
|
879 |
+
[route]
|
880 |
+
layers = -1,-2,-3,-4,-5,-7
|
881 |
+
|
882 |
+
# 130
|
883 |
+
[convolutional]
|
884 |
+
batch_normalize=1
|
885 |
+
filters=512
|
886 |
+
size=1
|
887 |
+
stride=1
|
888 |
+
pad=1
|
889 |
+
activation=swish
|
890 |
+
|
891 |
+
#############################
|
892 |
+
|
893 |
+
# ============ End of Neck ============ #
|
894 |
+
|
895 |
+
# ============ Head ============ #
|
896 |
+
|
897 |
+
|
898 |
+
# P3
|
899 |
+
[route]
|
900 |
+
layers = 100
|
901 |
+
|
902 |
+
[convolutional]
|
903 |
+
batch_normalize=1
|
904 |
+
size=3
|
905 |
+
stride=1
|
906 |
+
pad=1
|
907 |
+
filters=256
|
908 |
+
activation=swish
|
909 |
+
|
910 |
+
[convolutional]
|
911 |
+
size=1
|
912 |
+
stride=1
|
913 |
+
pad=1
|
914 |
+
filters=255
|
915 |
+
#activation=linear
|
916 |
+
activation=logistic
|
917 |
+
|
918 |
+
[yolo]
|
919 |
+
mask = 0,1,2
|
920 |
+
anchors = 12,16, 19,36, 40,28, 36,75, 76,55, 72,146, 142,110, 192,243, 459,401
|
921 |
+
classes=80
|
922 |
+
num=9
|
923 |
+
jitter=.1
|
924 |
+
scale_x_y = 2.0
|
925 |
+
objectness_smooth=1
|
926 |
+
ignore_thresh = .7
|
927 |
+
truth_thresh = 1
|
928 |
+
#random=1
|
929 |
+
resize=1.5
|
930 |
+
iou_thresh=0.2
|
931 |
+
iou_normalizer=0.05
|
932 |
+
cls_normalizer=0.5
|
933 |
+
obj_normalizer=1.0
|
934 |
+
iou_loss=ciou
|
935 |
+
nms_kind=diounms
|
936 |
+
beta_nms=0.6
|
937 |
+
new_coords=1
|
938 |
+
max_delta=2
|
939 |
+
|
940 |
+
|
941 |
+
# P4
|
942 |
+
[route]
|
943 |
+
layers = 115
|
944 |
+
|
945 |
+
[convolutional]
|
946 |
+
batch_normalize=1
|
947 |
+
size=3
|
948 |
+
stride=1
|
949 |
+
pad=1
|
950 |
+
filters=512
|
951 |
+
activation=swish
|
952 |
+
|
953 |
+
[convolutional]
|
954 |
+
size=1
|
955 |
+
stride=1
|
956 |
+
pad=1
|
957 |
+
filters=255
|
958 |
+
#activation=linear
|
959 |
+
activation=logistic
|
960 |
+
|
961 |
+
[yolo]
|
962 |
+
mask = 3,4,5
|
963 |
+
anchors = 12,16, 19,36, 40,28, 36,75, 76,55, 72,146, 142,110, 192,243, 459,401
|
964 |
+
classes=80
|
965 |
+
num=9
|
966 |
+
jitter=.1
|
967 |
+
scale_x_y = 2.0
|
968 |
+
objectness_smooth=1
|
969 |
+
ignore_thresh = .7
|
970 |
+
truth_thresh = 1
|
971 |
+
#random=1
|
972 |
+
resize=1.5
|
973 |
+
iou_thresh=0.2
|
974 |
+
iou_normalizer=0.05
|
975 |
+
cls_normalizer=0.5
|
976 |
+
obj_normalizer=1.0
|
977 |
+
iou_loss=ciou
|
978 |
+
nms_kind=diounms
|
979 |
+
beta_nms=0.6
|
980 |
+
new_coords=1
|
981 |
+
max_delta=2
|
982 |
+
|
983 |
+
|
984 |
+
# P5
|
985 |
+
[route]
|
986 |
+
layers = 130
|
987 |
+
|
988 |
+
[convolutional]
|
989 |
+
batch_normalize=1
|
990 |
+
size=3
|
991 |
+
stride=1
|
992 |
+
pad=1
|
993 |
+
filters=1024
|
994 |
+
activation=swish
|
995 |
+
|
996 |
+
[convolutional]
|
997 |
+
size=1
|
998 |
+
stride=1
|
999 |
+
pad=1
|
1000 |
+
filters=255
|
1001 |
+
#activation=linear
|
1002 |
+
activation=logistic
|
1003 |
+
|
1004 |
+
[yolo]
|
1005 |
+
mask = 6,7,8
|
1006 |
+
anchors = 12,16, 19,36, 40,28, 36,75, 76,55, 72,146, 142,110, 192,243, 459,401
|
1007 |
+
classes=80
|
1008 |
+
num=9
|
1009 |
+
jitter=.1
|
1010 |
+
scale_x_y = 2.0
|
1011 |
+
objectness_smooth=1
|
1012 |
+
ignore_thresh = .7
|
1013 |
+
truth_thresh = 1
|
1014 |
+
#random=1
|
1015 |
+
resize=1.5
|
1016 |
+
iou_thresh=0.2
|
1017 |
+
iou_normalizer=0.05
|
1018 |
+
cls_normalizer=0.5
|
1019 |
+
obj_normalizer=1.0
|
1020 |
+
iou_loss=ciou
|
1021 |
+
nms_kind=diounms
|
1022 |
+
beta_nms=0.6
|
1023 |
+
new_coords=1
|
1024 |
+
max_delta=2
|
testspace/models/yolov7/yolov7.weights
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4ecf7ca13ec5039ec7b79b0f25b156fda5eaf819d6c2bb6828ba55fe4f928332
|
3 |
+
size 147898248
|
testspace/models/yolov7/yolov7x.cfg
ADDED
@@ -0,0 +1,1152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[net]
|
2 |
+
# Testing
|
3 |
+
#batch=1
|
4 |
+
#subdivisions=1
|
5 |
+
# Training
|
6 |
+
batch=8
|
7 |
+
subdivisions=1
|
8 |
+
width=640
|
9 |
+
height=640
|
10 |
+
channels=3
|
11 |
+
momentum=0.9
|
12 |
+
decay=0.0005
|
13 |
+
angle=0
|
14 |
+
saturation = 1.5
|
15 |
+
exposure = 1.5
|
16 |
+
hue=.1
|
17 |
+
|
18 |
+
learning_rate=0.00261
|
19 |
+
burn_in=1000
|
20 |
+
|
21 |
+
max_batches = 2000200
|
22 |
+
policy=steps
|
23 |
+
steps=1600000,1800000
|
24 |
+
scales=.1,.1
|
25 |
+
|
26 |
+
|
27 |
+
# 0
|
28 |
+
[convolutional]
|
29 |
+
batch_normalize=1
|
30 |
+
filters=40
|
31 |
+
size=3
|
32 |
+
stride=1
|
33 |
+
pad=1
|
34 |
+
activation=swish
|
35 |
+
|
36 |
+
|
37 |
+
# 1
|
38 |
+
[convolutional]
|
39 |
+
batch_normalize=1
|
40 |
+
filters=80
|
41 |
+
size=3
|
42 |
+
stride=2
|
43 |
+
pad=1
|
44 |
+
activation=swish
|
45 |
+
|
46 |
+
[convolutional]
|
47 |
+
batch_normalize=1
|
48 |
+
filters=80
|
49 |
+
size=3
|
50 |
+
stride=1
|
51 |
+
pad=1
|
52 |
+
activation=swish
|
53 |
+
|
54 |
+
|
55 |
+
# 3
|
56 |
+
[convolutional]
|
57 |
+
batch_normalize=1
|
58 |
+
filters=160
|
59 |
+
size=3
|
60 |
+
stride=2
|
61 |
+
pad=1
|
62 |
+
activation=swish
|
63 |
+
|
64 |
+
[convolutional]
|
65 |
+
batch_normalize=1
|
66 |
+
filters=64
|
67 |
+
size=1
|
68 |
+
stride=1
|
69 |
+
pad=1
|
70 |
+
activation=swish
|
71 |
+
|
72 |
+
[route]
|
73 |
+
layers=-2
|
74 |
+
|
75 |
+
[convolutional]
|
76 |
+
batch_normalize=1
|
77 |
+
filters=64
|
78 |
+
size=1
|
79 |
+
stride=1
|
80 |
+
pad=1
|
81 |
+
activation=swish
|
82 |
+
|
83 |
+
[convolutional]
|
84 |
+
batch_normalize=1
|
85 |
+
filters=64
|
86 |
+
size=3
|
87 |
+
stride=1
|
88 |
+
pad=1
|
89 |
+
activation=swish
|
90 |
+
|
91 |
+
[convolutional]
|
92 |
+
batch_normalize=1
|
93 |
+
filters=64
|
94 |
+
size=3
|
95 |
+
stride=1
|
96 |
+
pad=1
|
97 |
+
activation=swish
|
98 |
+
|
99 |
+
[convolutional]
|
100 |
+
batch_normalize=1
|
101 |
+
filters=64
|
102 |
+
size=3
|
103 |
+
stride=1
|
104 |
+
pad=1
|
105 |
+
activation=swish
|
106 |
+
|
107 |
+
[convolutional]
|
108 |
+
batch_normalize=1
|
109 |
+
filters=64
|
110 |
+
size=3
|
111 |
+
stride=1
|
112 |
+
pad=1
|
113 |
+
activation=swish
|
114 |
+
|
115 |
+
[convolutional]
|
116 |
+
batch_normalize=1
|
117 |
+
filters=64
|
118 |
+
size=3
|
119 |
+
stride=1
|
120 |
+
pad=1
|
121 |
+
activation=swish
|
122 |
+
|
123 |
+
[convolutional]
|
124 |
+
batch_normalize=1
|
125 |
+
filters=64
|
126 |
+
size=3
|
127 |
+
stride=1
|
128 |
+
pad=1
|
129 |
+
activation=swish
|
130 |
+
|
131 |
+
[route]
|
132 |
+
layers = -1,-3,-5,-7,-9
|
133 |
+
|
134 |
+
# 14
|
135 |
+
[convolutional]
|
136 |
+
batch_normalize=1
|
137 |
+
filters=320
|
138 |
+
size=1
|
139 |
+
stride=1
|
140 |
+
pad=1
|
141 |
+
activation=swish
|
142 |
+
|
143 |
+
|
144 |
+
[maxpool]
|
145 |
+
size=2
|
146 |
+
stride=2
|
147 |
+
|
148 |
+
[convolutional]
|
149 |
+
batch_normalize=1
|
150 |
+
filters=160
|
151 |
+
size=1
|
152 |
+
stride=1
|
153 |
+
pad=1
|
154 |
+
activation=swish
|
155 |
+
|
156 |
+
[route]
|
157 |
+
layers=-3
|
158 |
+
|
159 |
+
[convolutional]
|
160 |
+
batch_normalize=1
|
161 |
+
filters=160
|
162 |
+
size=1
|
163 |
+
stride=1
|
164 |
+
pad=1
|
165 |
+
activation=swish
|
166 |
+
|
167 |
+
[convolutional]
|
168 |
+
batch_normalize=1
|
169 |
+
filters=160
|
170 |
+
size=3
|
171 |
+
stride=2
|
172 |
+
pad=1
|
173 |
+
activation=swish
|
174 |
+
|
175 |
+
# 20
|
176 |
+
[route]
|
177 |
+
layers = -1,-4
|
178 |
+
|
179 |
+
[convolutional]
|
180 |
+
batch_normalize=1
|
181 |
+
filters=128
|
182 |
+
size=1
|
183 |
+
stride=1
|
184 |
+
pad=1
|
185 |
+
activation=swish
|
186 |
+
|
187 |
+
[route]
|
188 |
+
layers=-2
|
189 |
+
|
190 |
+
[convolutional]
|
191 |
+
batch_normalize=1
|
192 |
+
filters=128
|
193 |
+
size=1
|
194 |
+
stride=1
|
195 |
+
pad=1
|
196 |
+
activation=swish
|
197 |
+
|
198 |
+
[convolutional]
|
199 |
+
batch_normalize=1
|
200 |
+
filters=128
|
201 |
+
size=3
|
202 |
+
stride=1
|
203 |
+
pad=1
|
204 |
+
activation=swish
|
205 |
+
|
206 |
+
[convolutional]
|
207 |
+
batch_normalize=1
|
208 |
+
filters=128
|
209 |
+
size=3
|
210 |
+
stride=1
|
211 |
+
pad=1
|
212 |
+
activation=swish
|
213 |
+
|
214 |
+
[convolutional]
|
215 |
+
batch_normalize=1
|
216 |
+
filters=128
|
217 |
+
size=3
|
218 |
+
stride=1
|
219 |
+
pad=1
|
220 |
+
activation=swish
|
221 |
+
|
222 |
+
[convolutional]
|
223 |
+
batch_normalize=1
|
224 |
+
filters=128
|
225 |
+
size=3
|
226 |
+
stride=1
|
227 |
+
pad=1
|
228 |
+
activation=swish
|
229 |
+
|
230 |
+
[convolutional]
|
231 |
+
batch_normalize=1
|
232 |
+
filters=128
|
233 |
+
size=3
|
234 |
+
stride=1
|
235 |
+
pad=1
|
236 |
+
activation=swish
|
237 |
+
|
238 |
+
[convolutional]
|
239 |
+
batch_normalize=1
|
240 |
+
filters=128
|
241 |
+
size=3
|
242 |
+
stride=1
|
243 |
+
pad=1
|
244 |
+
activation=swish
|
245 |
+
|
246 |
+
[route]
|
247 |
+
layers = -1,-3,-5,-7,-9
|
248 |
+
|
249 |
+
# 31
|
250 |
+
[convolutional]
|
251 |
+
batch_normalize=1
|
252 |
+
filters=640
|
253 |
+
size=1
|
254 |
+
stride=1
|
255 |
+
pad=1
|
256 |
+
activation=swish
|
257 |
+
|
258 |
+
|
259 |
+
[maxpool]
|
260 |
+
size=2
|
261 |
+
stride=2
|
262 |
+
|
263 |
+
[convolutional]
|
264 |
+
batch_normalize=1
|
265 |
+
filters=320
|
266 |
+
size=1
|
267 |
+
stride=1
|
268 |
+
pad=1
|
269 |
+
activation=swish
|
270 |
+
|
271 |
+
[route]
|
272 |
+
layers=-3
|
273 |
+
|
274 |
+
[convolutional]
|
275 |
+
batch_normalize=1
|
276 |
+
filters=320
|
277 |
+
size=1
|
278 |
+
stride=1
|
279 |
+
pad=1
|
280 |
+
activation=swish
|
281 |
+
|
282 |
+
[convolutional]
|
283 |
+
batch_normalize=1
|
284 |
+
filters=320
|
285 |
+
size=3
|
286 |
+
stride=2
|
287 |
+
pad=1
|
288 |
+
activation=swish
|
289 |
+
|
290 |
+
# 37
|
291 |
+
[route]
|
292 |
+
layers = -1,-4
|
293 |
+
|
294 |
+
[convolutional]
|
295 |
+
batch_normalize=1
|
296 |
+
filters=256
|
297 |
+
size=1
|
298 |
+
stride=1
|
299 |
+
pad=1
|
300 |
+
activation=swish
|
301 |
+
|
302 |
+
[route]
|
303 |
+
layers=-2
|
304 |
+
|
305 |
+
[convolutional]
|
306 |
+
batch_normalize=1
|
307 |
+
filters=256
|
308 |
+
size=1
|
309 |
+
stride=1
|
310 |
+
pad=1
|
311 |
+
activation=swish
|
312 |
+
|
313 |
+
[convolutional]
|
314 |
+
batch_normalize=1
|
315 |
+
filters=256
|
316 |
+
size=3
|
317 |
+
stride=1
|
318 |
+
pad=1
|
319 |
+
activation=swish
|
320 |
+
|
321 |
+
[convolutional]
|
322 |
+
batch_normalize=1
|
323 |
+
filters=256
|
324 |
+
size=3
|
325 |
+
stride=1
|
326 |
+
pad=1
|
327 |
+
activation=swish
|
328 |
+
|
329 |
+
[convolutional]
|
330 |
+
batch_normalize=1
|
331 |
+
filters=256
|
332 |
+
size=3
|
333 |
+
stride=1
|
334 |
+
pad=1
|
335 |
+
activation=swish
|
336 |
+
|
337 |
+
[convolutional]
|
338 |
+
batch_normalize=1
|
339 |
+
filters=256
|
340 |
+
size=3
|
341 |
+
stride=1
|
342 |
+
pad=1
|
343 |
+
activation=swish
|
344 |
+
|
345 |
+
[convolutional]
|
346 |
+
batch_normalize=1
|
347 |
+
filters=256
|
348 |
+
size=3
|
349 |
+
stride=1
|
350 |
+
pad=1
|
351 |
+
activation=swish
|
352 |
+
|
353 |
+
[convolutional]
|
354 |
+
batch_normalize=1
|
355 |
+
filters=256
|
356 |
+
size=3
|
357 |
+
stride=1
|
358 |
+
pad=1
|
359 |
+
activation=swish
|
360 |
+
|
361 |
+
[route]
|
362 |
+
layers = -1,-3,-5,-7,-9
|
363 |
+
|
364 |
+
# 48
|
365 |
+
[convolutional]
|
366 |
+
batch_normalize=1
|
367 |
+
filters=1280
|
368 |
+
size=1
|
369 |
+
stride=1
|
370 |
+
pad=1
|
371 |
+
activation=swish
|
372 |
+
|
373 |
+
|
374 |
+
[maxpool]
|
375 |
+
size=2
|
376 |
+
stride=2
|
377 |
+
|
378 |
+
[convolutional]
|
379 |
+
batch_normalize=1
|
380 |
+
filters=640
|
381 |
+
size=1
|
382 |
+
stride=1
|
383 |
+
pad=1
|
384 |
+
activation=swish
|
385 |
+
|
386 |
+
[route]
|
387 |
+
layers=-3
|
388 |
+
|
389 |
+
[convolutional]
|
390 |
+
batch_normalize=1
|
391 |
+
filters=640
|
392 |
+
size=1
|
393 |
+
stride=1
|
394 |
+
pad=1
|
395 |
+
activation=swish
|
396 |
+
|
397 |
+
[convolutional]
|
398 |
+
batch_normalize=1
|
399 |
+
filters=640
|
400 |
+
size=3
|
401 |
+
stride=2
|
402 |
+
pad=1
|
403 |
+
activation=swish
|
404 |
+
|
405 |
+
# 54
|
406 |
+
[route]
|
407 |
+
layers = -1,-4
|
408 |
+
|
409 |
+
[convolutional]
|
410 |
+
batch_normalize=1
|
411 |
+
filters=256
|
412 |
+
size=1
|
413 |
+
stride=1
|
414 |
+
pad=1
|
415 |
+
activation=swish
|
416 |
+
|
417 |
+
[route]
|
418 |
+
layers=-2
|
419 |
+
|
420 |
+
[convolutional]
|
421 |
+
batch_normalize=1
|
422 |
+
filters=256
|
423 |
+
size=1
|
424 |
+
stride=1
|
425 |
+
pad=1
|
426 |
+
activation=swish
|
427 |
+
|
428 |
+
[convolutional]
|
429 |
+
batch_normalize=1
|
430 |
+
filters=256
|
431 |
+
size=3
|
432 |
+
stride=1
|
433 |
+
pad=1
|
434 |
+
activation=swish
|
435 |
+
|
436 |
+
[convolutional]
|
437 |
+
batch_normalize=1
|
438 |
+
filters=256
|
439 |
+
size=3
|
440 |
+
stride=1
|
441 |
+
pad=1
|
442 |
+
activation=swish
|
443 |
+
|
444 |
+
[convolutional]
|
445 |
+
batch_normalize=1
|
446 |
+
filters=256
|
447 |
+
size=3
|
448 |
+
stride=1
|
449 |
+
pad=1
|
450 |
+
activation=swish
|
451 |
+
|
452 |
+
[convolutional]
|
453 |
+
batch_normalize=1
|
454 |
+
filters=256
|
455 |
+
size=3
|
456 |
+
stride=1
|
457 |
+
pad=1
|
458 |
+
activation=swish
|
459 |
+
|
460 |
+
[convolutional]
|
461 |
+
batch_normalize=1
|
462 |
+
filters=256
|
463 |
+
size=3
|
464 |
+
stride=1
|
465 |
+
pad=1
|
466 |
+
activation=swish
|
467 |
+
|
468 |
+
[convolutional]
|
469 |
+
batch_normalize=1
|
470 |
+
filters=256
|
471 |
+
size=3
|
472 |
+
stride=1
|
473 |
+
pad=1
|
474 |
+
activation=swish
|
475 |
+
|
476 |
+
[route]
|
477 |
+
layers = -1,-3,-5,-7,-9
|
478 |
+
|
479 |
+
# 65
|
480 |
+
[convolutional]
|
481 |
+
batch_normalize=1
|
482 |
+
filters=1280
|
483 |
+
size=1
|
484 |
+
stride=1
|
485 |
+
pad=1
|
486 |
+
activation=swish
|
487 |
+
|
488 |
+
##################################
|
489 |
+
|
490 |
+
### SPPCSP ###
|
491 |
+
[convolutional]
|
492 |
+
batch_normalize=1
|
493 |
+
filters=640
|
494 |
+
size=1
|
495 |
+
stride=1
|
496 |
+
pad=1
|
497 |
+
activation=swish
|
498 |
+
|
499 |
+
[route]
|
500 |
+
layers = -2
|
501 |
+
|
502 |
+
[convolutional]
|
503 |
+
batch_normalize=1
|
504 |
+
filters=640
|
505 |
+
size=1
|
506 |
+
stride=1
|
507 |
+
pad=1
|
508 |
+
activation=swish
|
509 |
+
|
510 |
+
[convolutional]
|
511 |
+
batch_normalize=1
|
512 |
+
size=3
|
513 |
+
stride=1
|
514 |
+
pad=1
|
515 |
+
filters=640
|
516 |
+
activation=swish
|
517 |
+
|
518 |
+
[convolutional]
|
519 |
+
batch_normalize=1
|
520 |
+
filters=640
|
521 |
+
size=1
|
522 |
+
stride=1
|
523 |
+
pad=1
|
524 |
+
activation=swish
|
525 |
+
|
526 |
+
### SPP ###
|
527 |
+
[maxpool]
|
528 |
+
stride=1
|
529 |
+
size=5
|
530 |
+
|
531 |
+
[route]
|
532 |
+
layers=-2
|
533 |
+
|
534 |
+
[maxpool]
|
535 |
+
stride=1
|
536 |
+
size=9
|
537 |
+
|
538 |
+
[route]
|
539 |
+
layers=-4
|
540 |
+
|
541 |
+
[maxpool]
|
542 |
+
stride=1
|
543 |
+
size=13
|
544 |
+
|
545 |
+
[route]
|
546 |
+
layers=-6,-5,-3,-1
|
547 |
+
### End SPP ###
|
548 |
+
|
549 |
+
[convolutional]
|
550 |
+
batch_normalize=1
|
551 |
+
filters=640
|
552 |
+
size=1
|
553 |
+
stride=1
|
554 |
+
pad=1
|
555 |
+
activation=swish
|
556 |
+
|
557 |
+
[convolutional]
|
558 |
+
batch_normalize=1
|
559 |
+
size=3
|
560 |
+
stride=1
|
561 |
+
pad=1
|
562 |
+
filters=640
|
563 |
+
activation=swish
|
564 |
+
|
565 |
+
[route]
|
566 |
+
layers = -1, -13
|
567 |
+
|
568 |
+
# 80
|
569 |
+
[convolutional]
|
570 |
+
batch_normalize=1
|
571 |
+
filters=640
|
572 |
+
size=1
|
573 |
+
stride=1
|
574 |
+
pad=1
|
575 |
+
activation=swish
|
576 |
+
|
577 |
+
|
578 |
+
[convolutional]
|
579 |
+
batch_normalize=1
|
580 |
+
filters=320
|
581 |
+
size=1
|
582 |
+
stride=1
|
583 |
+
pad=1
|
584 |
+
activation=swish
|
585 |
+
|
586 |
+
[upsample]
|
587 |
+
stride=2
|
588 |
+
|
589 |
+
[route]
|
590 |
+
layers = 48
|
591 |
+
|
592 |
+
[convolutional]
|
593 |
+
batch_normalize=1
|
594 |
+
filters=320
|
595 |
+
size=1
|
596 |
+
stride=1
|
597 |
+
pad=1
|
598 |
+
activation=swish
|
599 |
+
|
600 |
+
[route]
|
601 |
+
layers = -1,-3
|
602 |
+
|
603 |
+
|
604 |
+
[convolutional]
|
605 |
+
batch_normalize=1
|
606 |
+
filters=256
|
607 |
+
size=1
|
608 |
+
stride=1
|
609 |
+
pad=1
|
610 |
+
activation=swish
|
611 |
+
|
612 |
+
[route]
|
613 |
+
layers=-2
|
614 |
+
|
615 |
+
[convolutional]
|
616 |
+
batch_normalize=1
|
617 |
+
filters=256
|
618 |
+
size=1
|
619 |
+
stride=1
|
620 |
+
pad=1
|
621 |
+
activation=swish
|
622 |
+
|
623 |
+
[convolutional]
|
624 |
+
batch_normalize=1
|
625 |
+
filters=256
|
626 |
+
size=3
|
627 |
+
stride=1
|
628 |
+
pad=1
|
629 |
+
activation=swish
|
630 |
+
|
631 |
+
[convolutional]
|
632 |
+
batch_normalize=1
|
633 |
+
filters=256
|
634 |
+
size=3
|
635 |
+
stride=1
|
636 |
+
pad=1
|
637 |
+
activation=swish
|
638 |
+
|
639 |
+
[convolutional]
|
640 |
+
batch_normalize=1
|
641 |
+
filters=256
|
642 |
+
size=3
|
643 |
+
stride=1
|
644 |
+
pad=1
|
645 |
+
activation=swish
|
646 |
+
|
647 |
+
[convolutional]
|
648 |
+
batch_normalize=1
|
649 |
+
filters=256
|
650 |
+
size=3
|
651 |
+
stride=1
|
652 |
+
pad=1
|
653 |
+
activation=swish
|
654 |
+
|
655 |
+
[convolutional]
|
656 |
+
batch_normalize=1
|
657 |
+
filters=256
|
658 |
+
size=3
|
659 |
+
stride=1
|
660 |
+
pad=1
|
661 |
+
activation=swish
|
662 |
+
|
663 |
+
[convolutional]
|
664 |
+
batch_normalize=1
|
665 |
+
filters=256
|
666 |
+
size=3
|
667 |
+
stride=1
|
668 |
+
pad=1
|
669 |
+
activation=swish
|
670 |
+
|
671 |
+
[route]
|
672 |
+
layers = -1,-3,-5,-7,-9
|
673 |
+
|
674 |
+
# 96
|
675 |
+
[convolutional]
|
676 |
+
batch_normalize=1
|
677 |
+
filters=320
|
678 |
+
size=1
|
679 |
+
stride=1
|
680 |
+
pad=1
|
681 |
+
activation=swish
|
682 |
+
|
683 |
+
|
684 |
+
[convolutional]
|
685 |
+
batch_normalize=1
|
686 |
+
filters=160
|
687 |
+
size=1
|
688 |
+
stride=1
|
689 |
+
pad=1
|
690 |
+
activation=swish
|
691 |
+
|
692 |
+
[upsample]
|
693 |
+
stride=2
|
694 |
+
|
695 |
+
[route]
|
696 |
+
layers = 31
|
697 |
+
|
698 |
+
[convolutional]
|
699 |
+
batch_normalize=1
|
700 |
+
filters=160
|
701 |
+
size=1
|
702 |
+
stride=1
|
703 |
+
pad=1
|
704 |
+
activation=swish
|
705 |
+
|
706 |
+
[route]
|
707 |
+
layers = -1,-3
|
708 |
+
|
709 |
+
|
710 |
+
[convolutional]
|
711 |
+
batch_normalize=1
|
712 |
+
filters=128
|
713 |
+
size=1
|
714 |
+
stride=1
|
715 |
+
pad=1
|
716 |
+
activation=swish
|
717 |
+
|
718 |
+
[route]
|
719 |
+
layers=-2
|
720 |
+
|
721 |
+
[convolutional]
|
722 |
+
batch_normalize=1
|
723 |
+
filters=128
|
724 |
+
size=1
|
725 |
+
stride=1
|
726 |
+
pad=1
|
727 |
+
activation=swish
|
728 |
+
|
729 |
+
[convolutional]
|
730 |
+
batch_normalize=1
|
731 |
+
filters=128
|
732 |
+
size=3
|
733 |
+
stride=1
|
734 |
+
pad=1
|
735 |
+
activation=swish
|
736 |
+
|
737 |
+
[convolutional]
|
738 |
+
batch_normalize=1
|
739 |
+
filters=128
|
740 |
+
size=3
|
741 |
+
stride=1
|
742 |
+
pad=1
|
743 |
+
activation=swish
|
744 |
+
|
745 |
+
[convolutional]
|
746 |
+
batch_normalize=1
|
747 |
+
filters=128
|
748 |
+
size=3
|
749 |
+
stride=1
|
750 |
+
pad=1
|
751 |
+
activation=swish
|
752 |
+
|
753 |
+
[convolutional]
|
754 |
+
batch_normalize=1
|
755 |
+
filters=128
|
756 |
+
size=3
|
757 |
+
stride=1
|
758 |
+
pad=1
|
759 |
+
activation=swish
|
760 |
+
|
761 |
+
[convolutional]
|
762 |
+
batch_normalize=1
|
763 |
+
filters=128
|
764 |
+
size=3
|
765 |
+
stride=1
|
766 |
+
pad=1
|
767 |
+
activation=swish
|
768 |
+
|
769 |
+
[convolutional]
|
770 |
+
batch_normalize=1
|
771 |
+
filters=128
|
772 |
+
size=3
|
773 |
+
stride=1
|
774 |
+
pad=1
|
775 |
+
activation=swish
|
776 |
+
|
777 |
+
[route]
|
778 |
+
layers = -1,-3,-5,-7,-9
|
779 |
+
|
780 |
+
# 112
|
781 |
+
[convolutional]
|
782 |
+
batch_normalize=1
|
783 |
+
filters=160
|
784 |
+
size=1
|
785 |
+
stride=1
|
786 |
+
pad=1
|
787 |
+
activation=swish
|
788 |
+
|
789 |
+
|
790 |
+
[maxpool]
|
791 |
+
size=2
|
792 |
+
stride=2
|
793 |
+
|
794 |
+
[convolutional]
|
795 |
+
batch_normalize=1
|
796 |
+
filters=160
|
797 |
+
size=1
|
798 |
+
stride=1
|
799 |
+
pad=1
|
800 |
+
activation=swish
|
801 |
+
|
802 |
+
[route]
|
803 |
+
layers=-3
|
804 |
+
|
805 |
+
[convolutional]
|
806 |
+
batch_normalize=1
|
807 |
+
filters=160
|
808 |
+
size=1
|
809 |
+
stride=1
|
810 |
+
pad=1
|
811 |
+
activation=swish
|
812 |
+
|
813 |
+
[convolutional]
|
814 |
+
batch_normalize=1
|
815 |
+
filters=160
|
816 |
+
size=3
|
817 |
+
stride=2
|
818 |
+
pad=1
|
819 |
+
activation=swish
|
820 |
+
|
821 |
+
[route]
|
822 |
+
layers = -1,-4,96
|
823 |
+
|
824 |
+
|
825 |
+
[convolutional]
|
826 |
+
batch_normalize=1
|
827 |
+
filters=256
|
828 |
+
size=1
|
829 |
+
stride=1
|
830 |
+
pad=1
|
831 |
+
activation=swish
|
832 |
+
|
833 |
+
[route]
|
834 |
+
layers=-2
|
835 |
+
|
836 |
+
[convolutional]
|
837 |
+
batch_normalize=1
|
838 |
+
filters=256
|
839 |
+
size=1
|
840 |
+
stride=1
|
841 |
+
pad=1
|
842 |
+
activation=swish
|
843 |
+
|
844 |
+
[convolutional]
|
845 |
+
batch_normalize=1
|
846 |
+
filters=256
|
847 |
+
size=3
|
848 |
+
stride=1
|
849 |
+
pad=1
|
850 |
+
activation=swish
|
851 |
+
|
852 |
+
[convolutional]
|
853 |
+
batch_normalize=1
|
854 |
+
filters=256
|
855 |
+
size=3
|
856 |
+
stride=1
|
857 |
+
pad=1
|
858 |
+
activation=swish
|
859 |
+
|
860 |
+
[convolutional]
|
861 |
+
batch_normalize=1
|
862 |
+
filters=256
|
863 |
+
size=3
|
864 |
+
stride=1
|
865 |
+
pad=1
|
866 |
+
activation=swish
|
867 |
+
|
868 |
+
[convolutional]
|
869 |
+
batch_normalize=1
|
870 |
+
filters=256
|
871 |
+
size=3
|
872 |
+
stride=1
|
873 |
+
pad=1
|
874 |
+
activation=swish
|
875 |
+
|
876 |
+
[convolutional]
|
877 |
+
batch_normalize=1
|
878 |
+
filters=256
|
879 |
+
size=3
|
880 |
+
stride=1
|
881 |
+
pad=1
|
882 |
+
activation=swish
|
883 |
+
|
884 |
+
[convolutional]
|
885 |
+
batch_normalize=1
|
886 |
+
filters=256
|
887 |
+
size=3
|
888 |
+
stride=1
|
889 |
+
pad=1
|
890 |
+
activation=swish
|
891 |
+
|
892 |
+
[route]
|
893 |
+
layers = -1,-3,-5,-7,-9
|
894 |
+
|
895 |
+
# 129
|
896 |
+
[convolutional]
|
897 |
+
batch_normalize=1
|
898 |
+
filters=320
|
899 |
+
size=1
|
900 |
+
stride=1
|
901 |
+
pad=1
|
902 |
+
activation=swish
|
903 |
+
|
904 |
+
|
905 |
+
[maxpool]
|
906 |
+
size=2
|
907 |
+
stride=2
|
908 |
+
|
909 |
+
[convolutional]
|
910 |
+
batch_normalize=1
|
911 |
+
filters=320
|
912 |
+
size=1
|
913 |
+
stride=1
|
914 |
+
pad=1
|
915 |
+
activation=swish
|
916 |
+
|
917 |
+
[route]
|
918 |
+
layers=-3
|
919 |
+
|
920 |
+
[convolutional]
|
921 |
+
batch_normalize=1
|
922 |
+
filters=320
|
923 |
+
size=1
|
924 |
+
stride=1
|
925 |
+
pad=1
|
926 |
+
activation=swish
|
927 |
+
|
928 |
+
[convolutional]
|
929 |
+
batch_normalize=1
|
930 |
+
filters=320
|
931 |
+
size=3
|
932 |
+
stride=2
|
933 |
+
pad=1
|
934 |
+
activation=swish
|
935 |
+
|
936 |
+
[route]
|
937 |
+
layers = -1,-4,80
|
938 |
+
|
939 |
+
|
940 |
+
[convolutional]
|
941 |
+
batch_normalize=1
|
942 |
+
filters=512
|
943 |
+
size=1
|
944 |
+
stride=1
|
945 |
+
pad=1
|
946 |
+
activation=swish
|
947 |
+
|
948 |
+
[route]
|
949 |
+
layers=-2
|
950 |
+
|
951 |
+
[convolutional]
|
952 |
+
batch_normalize=1
|
953 |
+
filters=512
|
954 |
+
size=1
|
955 |
+
stride=1
|
956 |
+
pad=1
|
957 |
+
activation=swish
|
958 |
+
|
959 |
+
[convolutional]
|
960 |
+
batch_normalize=1
|
961 |
+
filters=512
|
962 |
+
size=3
|
963 |
+
stride=1
|
964 |
+
pad=1
|
965 |
+
activation=swish
|
966 |
+
|
967 |
+
[convolutional]
|
968 |
+
batch_normalize=1
|
969 |
+
filters=512
|
970 |
+
size=3
|
971 |
+
stride=1
|
972 |
+
pad=1
|
973 |
+
activation=swish
|
974 |
+
|
975 |
+
[convolutional]
|
976 |
+
batch_normalize=1
|
977 |
+
filters=512
|
978 |
+
size=3
|
979 |
+
stride=1
|
980 |
+
pad=1
|
981 |
+
activation=swish
|
982 |
+
|
983 |
+
[convolutional]
|
984 |
+
batch_normalize=1
|
985 |
+
filters=512
|
986 |
+
size=3
|
987 |
+
stride=1
|
988 |
+
pad=1
|
989 |
+
activation=swish
|
990 |
+
|
991 |
+
[convolutional]
|
992 |
+
batch_normalize=1
|
993 |
+
filters=512
|
994 |
+
size=3
|
995 |
+
stride=1
|
996 |
+
pad=1
|
997 |
+
activation=swish
|
998 |
+
|
999 |
+
[convolutional]
|
1000 |
+
batch_normalize=1
|
1001 |
+
filters=512
|
1002 |
+
size=3
|
1003 |
+
stride=1
|
1004 |
+
pad=1
|
1005 |
+
activation=swish
|
1006 |
+
|
1007 |
+
[route]
|
1008 |
+
layers = -1,-3,-5,-7,-9
|
1009 |
+
|
1010 |
+
# 146
|
1011 |
+
[convolutional]
|
1012 |
+
batch_normalize=1
|
1013 |
+
filters=640
|
1014 |
+
size=1
|
1015 |
+
stride=1
|
1016 |
+
pad=1
|
1017 |
+
activation=swish
|
1018 |
+
|
1019 |
+
#############################
|
1020 |
+
|
1021 |
+
# ============ End of Neck ============ #
|
1022 |
+
|
1023 |
+
# ============ Head ============ #
|
1024 |
+
|
1025 |
+
|
1026 |
+
# P3
|
1027 |
+
[route]
|
1028 |
+
layers = 112
|
1029 |
+
|
1030 |
+
[convolutional]
|
1031 |
+
batch_normalize=1
|
1032 |
+
size=3
|
1033 |
+
stride=1
|
1034 |
+
pad=1
|
1035 |
+
filters=320
|
1036 |
+
activation=swish
|
1037 |
+
|
1038 |
+
[convolutional]
|
1039 |
+
size=1
|
1040 |
+
stride=1
|
1041 |
+
pad=1
|
1042 |
+
filters=255
|
1043 |
+
#activation=linear
|
1044 |
+
activation=logistic
|
1045 |
+
|
1046 |
+
[yolo]
|
1047 |
+
mask = 0,1,2
|
1048 |
+
anchors = 12,16, 19,36, 40,28, 36,75, 76,55, 72,146, 142,110, 192,243, 459,401
|
1049 |
+
classes=80
|
1050 |
+
num=9
|
1051 |
+
jitter=.1
|
1052 |
+
scale_x_y = 2.0
|
1053 |
+
objectness_smooth=1
|
1054 |
+
ignore_thresh = .7
|
1055 |
+
truth_thresh = 1
|
1056 |
+
#random=1
|
1057 |
+
resize=1.5
|
1058 |
+
iou_thresh=0.2
|
1059 |
+
iou_normalizer=0.05
|
1060 |
+
cls_normalizer=0.5
|
1061 |
+
obj_normalizer=1.0
|
1062 |
+
iou_loss=ciou
|
1063 |
+
nms_kind=diounms
|
1064 |
+
beta_nms=0.6
|
1065 |
+
new_coords=1
|
1066 |
+
max_delta=2
|
1067 |
+
|
1068 |
+
|
1069 |
+
# P4
|
1070 |
+
[route]
|
1071 |
+
layers = 129
|
1072 |
+
|
1073 |
+
[convolutional]
|
1074 |
+
batch_normalize=1
|
1075 |
+
size=3
|
1076 |
+
stride=1
|
1077 |
+
pad=1
|
1078 |
+
filters=640
|
1079 |
+
activation=swish
|
1080 |
+
|
1081 |
+
[convolutional]
|
1082 |
+
size=1
|
1083 |
+
stride=1
|
1084 |
+
pad=1
|
1085 |
+
filters=255
|
1086 |
+
#activation=linear
|
1087 |
+
activation=logistic
|
1088 |
+
|
1089 |
+
[yolo]
|
1090 |
+
mask = 3,4,5
|
1091 |
+
anchors = 12,16, 19,36, 40,28, 36,75, 76,55, 72,146, 142,110, 192,243, 459,401
|
1092 |
+
classes=80
|
1093 |
+
num=9
|
1094 |
+
jitter=.1
|
1095 |
+
scale_x_y = 2.0
|
1096 |
+
objectness_smooth=1
|
1097 |
+
ignore_thresh = .7
|
1098 |
+
truth_thresh = 1
|
1099 |
+
#random=1
|
1100 |
+
resize=1.5
|
1101 |
+
iou_thresh=0.2
|
1102 |
+
iou_normalizer=0.05
|
1103 |
+
cls_normalizer=0.5
|
1104 |
+
obj_normalizer=1.0
|
1105 |
+
iou_loss=ciou
|
1106 |
+
nms_kind=diounms
|
1107 |
+
beta_nms=0.6
|
1108 |
+
new_coords=1
|
1109 |
+
max_delta=2
|
1110 |
+
|
1111 |
+
|
1112 |
+
# P5
|
1113 |
+
[route]
|
1114 |
+
layers = 146
|
1115 |
+
|
1116 |
+
[convolutional]
|
1117 |
+
batch_normalize=1
|
1118 |
+
size=3
|
1119 |
+
stride=1
|
1120 |
+
pad=1
|
1121 |
+
filters=1280
|
1122 |
+
activation=swish
|
1123 |
+
|
1124 |
+
[convolutional]
|
1125 |
+
size=1
|
1126 |
+
stride=1
|
1127 |
+
pad=1
|
1128 |
+
filters=255
|
1129 |
+
#activation=linear
|
1130 |
+
activation=logistic
|
1131 |
+
|
1132 |
+
[yolo]
|
1133 |
+
mask = 6,7,8
|
1134 |
+
anchors = 12,16, 19,36, 40,28, 36,75, 76,55, 72,146, 142,110, 192,243, 459,401
|
1135 |
+
classes=80
|
1136 |
+
num=9
|
1137 |
+
jitter=.1
|
1138 |
+
scale_x_y = 2.0
|
1139 |
+
objectness_smooth=1
|
1140 |
+
ignore_thresh = .7
|
1141 |
+
truth_thresh = 1
|
1142 |
+
#random=1
|
1143 |
+
resize=1.5
|
1144 |
+
iou_thresh=0.2
|
1145 |
+
iou_normalizer=0.05
|
1146 |
+
cls_normalizer=0.5
|
1147 |
+
obj_normalizer=1.0
|
1148 |
+
iou_loss=ciou
|
1149 |
+
nms_kind=diounms
|
1150 |
+
beta_nms=0.6
|
1151 |
+
new_coords=1
|
1152 |
+
max_delta=2
|
testspace/models/yolov7/yolov7x.weights
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a3de8d79d6ab9b56ba34a82e0c0b021a5f073abb62132e9af6cc9a301673b1da
|
3 |
+
size 285638760
|
testspace/models/yolov8/coco.names
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
person
|
2 |
+
bicycle
|
3 |
+
car
|
4 |
+
motorbike
|
5 |
+
aeroplane
|
6 |
+
bus
|
7 |
+
train
|
8 |
+
truck
|
9 |
+
boat
|
10 |
+
traffic light
|
11 |
+
fire hydrant
|
12 |
+
stop sign
|
13 |
+
parking meter
|
14 |
+
bench
|
15 |
+
bird
|
16 |
+
cat
|
17 |
+
dog
|
18 |
+
horse
|
19 |
+
sheep
|
20 |
+
cow
|
21 |
+
elephant
|
22 |
+
bear
|
23 |
+
zebra
|
24 |
+
giraffe
|
25 |
+
backpack
|
26 |
+
umbrella
|
27 |
+
handbag
|
28 |
+
tie
|
29 |
+
suitcase
|
30 |
+
frisbee
|
31 |
+
skis
|
32 |
+
snowboard
|
33 |
+
sports ball
|
34 |
+
kite
|
35 |
+
baseball bat
|
36 |
+
baseball glove
|
37 |
+
skateboard
|
38 |
+
surfboard
|
39 |
+
tennis racket
|
40 |
+
bottle
|
41 |
+
wine glass
|
42 |
+
cup
|
43 |
+
fork
|
44 |
+
knife
|
45 |
+
spoon
|
46 |
+
bowl
|
47 |
+
banana
|
48 |
+
apple
|
49 |
+
sandwich
|
50 |
+
orange
|
51 |
+
broccoli
|
52 |
+
carrot
|
53 |
+
hot dog
|
54 |
+
pizza
|
55 |
+
donut
|
56 |
+
cake
|
57 |
+
chair
|
58 |
+
sofa
|
59 |
+
pottedplant
|
60 |
+
bed
|
61 |
+
diningtable
|
62 |
+
toilet
|
63 |
+
tvmonitor
|
64 |
+
laptop
|
65 |
+
mouse
|
66 |
+
remote
|
67 |
+
keyboard
|
68 |
+
cell phone
|
69 |
+
microwave
|
70 |
+
oven
|
71 |
+
toaster
|
72 |
+
sink
|
73 |
+
refrigerator
|
74 |
+
book
|
75 |
+
clock
|
76 |
+
vase
|
77 |
+
scissors
|
78 |
+
teddy bear
|
79 |
+
hair drier
|
80 |
+
toothbrush
|
testspace/models/yolov8/yolov8l.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:49a7205f006d70607431007030a9e010d851c37daeea439cc05b7e9cab4261ca
|
3 |
+
size 174915720
|
testspace/models/yolov8/yolov8m.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:23a4afeb86004219248a6576a5db65149479bded601a1d33fca45c2e33c7402a
|
3 |
+
size 103773640
|
testspace/models/yolov8/yolov8n.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ad24cdfc9653fdeac79dd984e56cbd74b6a51754a6b8a0572488bb7f3ea95938
|
3 |
+
size 12823637
|
testspace/models/yolov8/yolov8s.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:422a689c3a559a5bbd0aee5fdbeb046f3dfbb4b6ed6cc79bc5d11ffda9680de4
|
3 |
+
size 44842287
|
testspace/models/yolov8/yolov8x.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b5f141a10e963cb304e10358fa42cc8c8546cdeaba6d91c8885521e41082f9cb
|
3 |
+
size 273045003
|
testspace/models/yolov9/coco.names
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
person
|
2 |
+
bicycle
|
3 |
+
car
|
4 |
+
motorbike
|
5 |
+
aeroplane
|
6 |
+
bus
|
7 |
+
train
|
8 |
+
truck
|
9 |
+
boat
|
10 |
+
traffic light
|
11 |
+
fire hydrant
|
12 |
+
stop sign
|
13 |
+
parking meter
|
14 |
+
bench
|
15 |
+
bird
|
16 |
+
cat
|
17 |
+
dog
|
18 |
+
horse
|
19 |
+
sheep
|
20 |
+
cow
|
21 |
+
elephant
|
22 |
+
bear
|
23 |
+
zebra
|
24 |
+
giraffe
|
25 |
+
backpack
|
26 |
+
umbrella
|
27 |
+
handbag
|
28 |
+
tie
|
29 |
+
suitcase
|
30 |
+
frisbee
|
31 |
+
skis
|
32 |
+
snowboard
|
33 |
+
sports ball
|
34 |
+
kite
|
35 |
+
baseball bat
|
36 |
+
baseball glove
|
37 |
+
skateboard
|
38 |
+
surfboard
|
39 |
+
tennis racket
|
40 |
+
bottle
|
41 |
+
wine glass
|
42 |
+
cup
|
43 |
+
fork
|
44 |
+
knife
|
45 |
+
spoon
|
46 |
+
bowl
|
47 |
+
banana
|
48 |
+
apple
|
49 |
+
sandwich
|
50 |
+
orange
|
51 |
+
broccoli
|
52 |
+
carrot
|
53 |
+
hot dog
|
54 |
+
pizza
|
55 |
+
donut
|
56 |
+
cake
|
57 |
+
chair
|
58 |
+
sofa
|
59 |
+
pottedplant
|
60 |
+
bed
|
61 |
+
diningtable
|
62 |
+
toilet
|
63 |
+
tvmonitor
|
64 |
+
laptop
|
65 |
+
mouse
|
66 |
+
remote
|
67 |
+
keyboard
|
68 |
+
cell phone
|
69 |
+
microwave
|
70 |
+
oven
|
71 |
+
toaster
|
72 |
+
sink
|
73 |
+
refrigerator
|
74 |
+
book
|
75 |
+
clock
|
76 |
+
vase
|
77 |
+
scissors
|
78 |
+
teddy bear
|
79 |
+
hair drier
|
80 |
+
toothbrush
|
testspace/models/yolov9/yolov9-c-converted.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:61c31bdf5d8e65c5fecbd2bda6304678de59841c2419c459ebf44c860e86d9e1
|
3 |
+
size 101452559
|
testspace/models/yolov9/yolov9-e-converted.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:770c4559e2ba7c1a2c176d07c1041f9a89d22101dacf103a2ddd3139fe793336
|
3 |
+
size 229804426
|
testspace/models/yolov9/yolov9-m-converted.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:457a20138b3505c920af41d2f17e65bede65bc515661fa7518f11bcaa1149cc6
|
3 |
+
size 80200508
|
testspace/models/yolov9/yolov9-s-converted.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3171199a5c79d5d73f47d53a92264194120ca5287f9fa68f363030595338558b
|
3 |
+
size 28748339
|
testspace/models/yolov9/yolov9-t-converted.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ba3097518bcea7e59c41a09a12d6d94109850240cac58da185e2b1bde21fe3b0
|
3 |
+
size 8331824
|