choyg commited on
Commit
0fc2edd
·
verified ·
1 Parent(s): 37fb392

Add ONNX models for OpenCV DNN module

Browse files
Files changed (46) hide show
  1. .gitattributes +5 -0
  2. testspace/images/dog.jpg +0 -0
  3. testspace/models/model from here.txt +27 -0
  4. testspace/models/yolov10/coco.names +80 -0
  5. testspace/models/yolov10/yolov10b.onnx +3 -0
  6. testspace/models/yolov10/yolov10l.onnx +3 -0
  7. testspace/models/yolov10/yolov10m.onnx +3 -0
  8. testspace/models/yolov10/yolov10n.onnx +3 -0
  9. testspace/models/yolov10/yolov10s.onnx +3 -0
  10. testspace/models/yolov10/yolov10x.onnx +3 -0
  11. testspace/models/yolov4/coco.names +80 -0
  12. testspace/models/yolov4/yolov4.cfg +1158 -0
  13. testspace/models/yolov4/yolov4.weights +3 -0
  14. testspace/models/yolov4_csp/coco.names +80 -0
  15. testspace/models/yolov4_csp/yolov4-csp.cfg +1279 -0
  16. testspace/models/yolov4_csp/yolov4-csp.weights +3 -0
  17. testspace/models/yolov5/coco.names +80 -0
  18. testspace/models/yolov5/yolov5l.onnx +3 -0
  19. testspace/models/yolov5/yolov5m.onnx +3 -0
  20. testspace/models/yolov5/yolov5n.onnx +3 -0
  21. testspace/models/yolov5/yolov5s.onnx +3 -0
  22. testspace/models/yolov5/yolov5x.onnx +3 -0
  23. testspace/models/yolov6/coco.names +80 -0
  24. testspace/models/yolov6/yolov6l.onnx +3 -0
  25. testspace/models/yolov6/yolov6m.onnx +3 -0
  26. testspace/models/yolov6/yolov6n.onnx +3 -0
  27. testspace/models/yolov6/yolov6s.onnx +3 -0
  28. testspace/models/yolov7/coco.names +80 -0
  29. testspace/models/yolov7/yolov7-tiny.cfg +706 -0
  30. testspace/models/yolov7/yolov7-tiny.weights +3 -0
  31. testspace/models/yolov7/yolov7.cfg +1024 -0
  32. testspace/models/yolov7/yolov7.weights +3 -0
  33. testspace/models/yolov7/yolov7x.cfg +1152 -0
  34. testspace/models/yolov7/yolov7x.weights +3 -0
  35. testspace/models/yolov8/coco.names +80 -0
  36. testspace/models/yolov8/yolov8l.onnx +3 -0
  37. testspace/models/yolov8/yolov8m.onnx +3 -0
  38. testspace/models/yolov8/yolov8n.onnx +3 -0
  39. testspace/models/yolov8/yolov8s.onnx +3 -0
  40. testspace/models/yolov8/yolov8x.onnx +3 -0
  41. testspace/models/yolov9/coco.names +80 -0
  42. testspace/models/yolov9/yolov9-c-converted.onnx +3 -0
  43. testspace/models/yolov9/yolov9-e-converted.onnx +3 -0
  44. testspace/models/yolov9/yolov9-m-converted.onnx +3 -0
  45. testspace/models/yolov9/yolov9-s-converted.onnx +3 -0
  46. testspace/models/yolov9/yolov9-t-converted.onnx +3 -0
.gitattributes CHANGED
@@ -33,3 +33,8 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ testspace/models/yolov4_csp/yolov4-csp.weights filter=lfs diff=lfs merge=lfs -text
37
+ testspace/models/yolov4/yolov4.weights filter=lfs diff=lfs merge=lfs -text
38
+ testspace/models/yolov7/yolov7-tiny.weights filter=lfs diff=lfs merge=lfs -text
39
+ testspace/models/yolov7/yolov7.weights filter=lfs diff=lfs merge=lfs -text
40
+ testspace/models/yolov7/yolov7x.weights filter=lfs diff=lfs merge=lfs -text
testspace/images/dog.jpg ADDED
testspace/models/model from here.txt ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ YOLO v4, CSP(Scaled YOLO v4) (Darknet)
2
+ https://github.com/AlexeyAB/darknet/releases/tag/yolov4
3
+
4
+ YOLO v5 (ONNX)
5
+ https://github.com/ultralytics/yolov5/releases/tag/v7.0
6
+
7
+ YOLO v6 (ONNX)
8
+ https://github.com/meituan/YOLOv6/releases/tag/0.3.0
9
+
10
+ YOLO v7 (Darknet)
11
+ https://github.com/AlexeyAB/darknet/issues/8595
12
+
13
+ YOLO v8 (ONNX, need convert)
14
+ https://huggingface.co/Ultralytics/YOLOv8
15
+ colab (Official)
16
+ https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb
17
+
18
+ YOLO v9 (ONNX, need convert)
19
+ https://github.com/WongKinYiu/yolov9
20
+ colab (I made for converting)
21
+ https://gist.github.com/whdlgp/bec49d62ddc72c9464817365c4cc7fbc
22
+
23
+ YOLOv10 (ONNX, need custom model, need convert)
24
+ https://github.com/THU-MIG/yolov10
25
+ Above not work for OpenCV 4.10.0. You need special version, https://docs.opencv.org/4.x/da/d9d/tutorial_dnn_yolo.html
26
+ colab (I made for converting from OpenCV's YOLOv10 custom version)
27
+ https://gist.github.com/whdlgp/f69b0c40728a2d75f564cb0d37715993
testspace/models/yolov10/coco.names ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ person
2
+ bicycle
3
+ car
4
+ motorbike
5
+ aeroplane
6
+ bus
7
+ train
8
+ truck
9
+ boat
10
+ traffic light
11
+ fire hydrant
12
+ stop sign
13
+ parking meter
14
+ bench
15
+ bird
16
+ cat
17
+ dog
18
+ horse
19
+ sheep
20
+ cow
21
+ elephant
22
+ bear
23
+ zebra
24
+ giraffe
25
+ backpack
26
+ umbrella
27
+ handbag
28
+ tie
29
+ suitcase
30
+ frisbee
31
+ skis
32
+ snowboard
33
+ sports ball
34
+ kite
35
+ baseball bat
36
+ baseball glove
37
+ skateboard
38
+ surfboard
39
+ tennis racket
40
+ bottle
41
+ wine glass
42
+ cup
43
+ fork
44
+ knife
45
+ spoon
46
+ bowl
47
+ banana
48
+ apple
49
+ sandwich
50
+ orange
51
+ broccoli
52
+ carrot
53
+ hot dog
54
+ pizza
55
+ donut
56
+ cake
57
+ chair
58
+ sofa
59
+ pottedplant
60
+ bed
61
+ diningtable
62
+ toilet
63
+ tvmonitor
64
+ laptop
65
+ mouse
66
+ remote
67
+ keyboard
68
+ cell phone
69
+ microwave
70
+ oven
71
+ toaster
72
+ sink
73
+ refrigerator
74
+ book
75
+ clock
76
+ vase
77
+ scissors
78
+ teddy bear
79
+ hair drier
80
+ toothbrush
testspace/models/yolov10/yolov10b.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a5bbab3a6b79316083fab1d36cd9190201e3f2108d2f7cf3afb2eb58139f663c
3
+ size 76526110
testspace/models/yolov10/yolov10l.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:96daa80aa2cc934d07bed1c8a1387555daf85e4f1fc8888d82050cb55b528f74
3
+ size 97769283
testspace/models/yolov10/yolov10m.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1ff4c4bffca37629561e45d0e8c5afed8953b21c5c7784619469ca62257e4bfe
3
+ size 61696269
testspace/models/yolov10/yolov10n.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1020c5ee8c51114ab16d27b6ca75b9302fe71b951c174a3218889ea42fade236
3
+ size 9430825
testspace/models/yolov10/yolov10s.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1f3612fa5e8dc969ca6006fd2b243780cfd36e7c4131d981af0d7705f6785c32
3
+ size 29231866
testspace/models/yolov10/yolov10x.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4a49f9e3d459dfa7777d12cd2197c7b7ef10f8afe94eca9cf03ef01a51916fb4
3
+ size 118192493
testspace/models/yolov4/coco.names ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ person
2
+ bicycle
3
+ car
4
+ motorbike
5
+ aeroplane
6
+ bus
7
+ train
8
+ truck
9
+ boat
10
+ traffic light
11
+ fire hydrant
12
+ stop sign
13
+ parking meter
14
+ bench
15
+ bird
16
+ cat
17
+ dog
18
+ horse
19
+ sheep
20
+ cow
21
+ elephant
22
+ bear
23
+ zebra
24
+ giraffe
25
+ backpack
26
+ umbrella
27
+ handbag
28
+ tie
29
+ suitcase
30
+ frisbee
31
+ skis
32
+ snowboard
33
+ sports ball
34
+ kite
35
+ baseball bat
36
+ baseball glove
37
+ skateboard
38
+ surfboard
39
+ tennis racket
40
+ bottle
41
+ wine glass
42
+ cup
43
+ fork
44
+ knife
45
+ spoon
46
+ bowl
47
+ banana
48
+ apple
49
+ sandwich
50
+ orange
51
+ broccoli
52
+ carrot
53
+ hot dog
54
+ pizza
55
+ donut
56
+ cake
57
+ chair
58
+ sofa
59
+ pottedplant
60
+ bed
61
+ diningtable
62
+ toilet
63
+ tvmonitor
64
+ laptop
65
+ mouse
66
+ remote
67
+ keyboard
68
+ cell phone
69
+ microwave
70
+ oven
71
+ toaster
72
+ sink
73
+ refrigerator
74
+ book
75
+ clock
76
+ vase
77
+ scissors
78
+ teddy bear
79
+ hair drier
80
+ toothbrush
testspace/models/yolov4/yolov4.cfg ADDED
@@ -0,0 +1,1158 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [net]
2
+ batch=64
3
+ subdivisions=8
4
+ # Training
5
+ #width=512
6
+ #height=512
7
+ width=608
8
+ height=608
9
+ channels=3
10
+ momentum=0.949
11
+ decay=0.0005
12
+ angle=0
13
+ saturation = 1.5
14
+ exposure = 1.5
15
+ hue=.1
16
+
17
+ learning_rate=0.0013
18
+ burn_in=1000
19
+ max_batches = 500500
20
+ policy=steps
21
+ steps=400000,450000
22
+ scales=.1,.1
23
+
24
+ #cutmix=1
25
+ mosaic=1
26
+
27
+ #:104x104 54:52x52 85:26x26 104:13x13 for 416
28
+
29
+ [convolutional]
30
+ batch_normalize=1
31
+ filters=32
32
+ size=3
33
+ stride=1
34
+ pad=1
35
+ activation=mish
36
+
37
+ # Downsample
38
+
39
+ [convolutional]
40
+ batch_normalize=1
41
+ filters=64
42
+ size=3
43
+ stride=2
44
+ pad=1
45
+ activation=mish
46
+
47
+ [convolutional]
48
+ batch_normalize=1
49
+ filters=64
50
+ size=1
51
+ stride=1
52
+ pad=1
53
+ activation=mish
54
+
55
+ [route]
56
+ layers = -2
57
+
58
+ [convolutional]
59
+ batch_normalize=1
60
+ filters=64
61
+ size=1
62
+ stride=1
63
+ pad=1
64
+ activation=mish
65
+
66
+ [convolutional]
67
+ batch_normalize=1
68
+ filters=32
69
+ size=1
70
+ stride=1
71
+ pad=1
72
+ activation=mish
73
+
74
+ [convolutional]
75
+ batch_normalize=1
76
+ filters=64
77
+ size=3
78
+ stride=1
79
+ pad=1
80
+ activation=mish
81
+
82
+ [shortcut]
83
+ from=-3
84
+ activation=linear
85
+
86
+ [convolutional]
87
+ batch_normalize=1
88
+ filters=64
89
+ size=1
90
+ stride=1
91
+ pad=1
92
+ activation=mish
93
+
94
+ [route]
95
+ layers = -1,-7
96
+
97
+ [convolutional]
98
+ batch_normalize=1
99
+ filters=64
100
+ size=1
101
+ stride=1
102
+ pad=1
103
+ activation=mish
104
+
105
+ # Downsample
106
+
107
+ [convolutional]
108
+ batch_normalize=1
109
+ filters=128
110
+ size=3
111
+ stride=2
112
+ pad=1
113
+ activation=mish
114
+
115
+ [convolutional]
116
+ batch_normalize=1
117
+ filters=64
118
+ size=1
119
+ stride=1
120
+ pad=1
121
+ activation=mish
122
+
123
+ [route]
124
+ layers = -2
125
+
126
+ [convolutional]
127
+ batch_normalize=1
128
+ filters=64
129
+ size=1
130
+ stride=1
131
+ pad=1
132
+ activation=mish
133
+
134
+ [convolutional]
135
+ batch_normalize=1
136
+ filters=64
137
+ size=1
138
+ stride=1
139
+ pad=1
140
+ activation=mish
141
+
142
+ [convolutional]
143
+ batch_normalize=1
144
+ filters=64
145
+ size=3
146
+ stride=1
147
+ pad=1
148
+ activation=mish
149
+
150
+ [shortcut]
151
+ from=-3
152
+ activation=linear
153
+
154
+ [convolutional]
155
+ batch_normalize=1
156
+ filters=64
157
+ size=1
158
+ stride=1
159
+ pad=1
160
+ activation=mish
161
+
162
+ [convolutional]
163
+ batch_normalize=1
164
+ filters=64
165
+ size=3
166
+ stride=1
167
+ pad=1
168
+ activation=mish
169
+
170
+ [shortcut]
171
+ from=-3
172
+ activation=linear
173
+
174
+ [convolutional]
175
+ batch_normalize=1
176
+ filters=64
177
+ size=1
178
+ stride=1
179
+ pad=1
180
+ activation=mish
181
+
182
+ [route]
183
+ layers = -1,-10
184
+
185
+ [convolutional]
186
+ batch_normalize=1
187
+ filters=128
188
+ size=1
189
+ stride=1
190
+ pad=1
191
+ activation=mish
192
+
193
+ # Downsample
194
+
195
+ [convolutional]
196
+ batch_normalize=1
197
+ filters=256
198
+ size=3
199
+ stride=2
200
+ pad=1
201
+ activation=mish
202
+
203
+ [convolutional]
204
+ batch_normalize=1
205
+ filters=128
206
+ size=1
207
+ stride=1
208
+ pad=1
209
+ activation=mish
210
+
211
+ [route]
212
+ layers = -2
213
+
214
+ [convolutional]
215
+ batch_normalize=1
216
+ filters=128
217
+ size=1
218
+ stride=1
219
+ pad=1
220
+ activation=mish
221
+
222
+ [convolutional]
223
+ batch_normalize=1
224
+ filters=128
225
+ size=1
226
+ stride=1
227
+ pad=1
228
+ activation=mish
229
+
230
+ [convolutional]
231
+ batch_normalize=1
232
+ filters=128
233
+ size=3
234
+ stride=1
235
+ pad=1
236
+ activation=mish
237
+
238
+ [shortcut]
239
+ from=-3
240
+ activation=linear
241
+
242
+ [convolutional]
243
+ batch_normalize=1
244
+ filters=128
245
+ size=1
246
+ stride=1
247
+ pad=1
248
+ activation=mish
249
+
250
+ [convolutional]
251
+ batch_normalize=1
252
+ filters=128
253
+ size=3
254
+ stride=1
255
+ pad=1
256
+ activation=mish
257
+
258
+ [shortcut]
259
+ from=-3
260
+ activation=linear
261
+
262
+ [convolutional]
263
+ batch_normalize=1
264
+ filters=128
265
+ size=1
266
+ stride=1
267
+ pad=1
268
+ activation=mish
269
+
270
+ [convolutional]
271
+ batch_normalize=1
272
+ filters=128
273
+ size=3
274
+ stride=1
275
+ pad=1
276
+ activation=mish
277
+
278
+ [shortcut]
279
+ from=-3
280
+ activation=linear
281
+
282
+ [convolutional]
283
+ batch_normalize=1
284
+ filters=128
285
+ size=1
286
+ stride=1
287
+ pad=1
288
+ activation=mish
289
+
290
+ [convolutional]
291
+ batch_normalize=1
292
+ filters=128
293
+ size=3
294
+ stride=1
295
+ pad=1
296
+ activation=mish
297
+
298
+ [shortcut]
299
+ from=-3
300
+ activation=linear
301
+
302
+
303
+ [convolutional]
304
+ batch_normalize=1
305
+ filters=128
306
+ size=1
307
+ stride=1
308
+ pad=1
309
+ activation=mish
310
+
311
+ [convolutional]
312
+ batch_normalize=1
313
+ filters=128
314
+ size=3
315
+ stride=1
316
+ pad=1
317
+ activation=mish
318
+
319
+ [shortcut]
320
+ from=-3
321
+ activation=linear
322
+
323
+ [convolutional]
324
+ batch_normalize=1
325
+ filters=128
326
+ size=1
327
+ stride=1
328
+ pad=1
329
+ activation=mish
330
+
331
+ [convolutional]
332
+ batch_normalize=1
333
+ filters=128
334
+ size=3
335
+ stride=1
336
+ pad=1
337
+ activation=mish
338
+
339
+ [shortcut]
340
+ from=-3
341
+ activation=linear
342
+
343
+ [convolutional]
344
+ batch_normalize=1
345
+ filters=128
346
+ size=1
347
+ stride=1
348
+ pad=1
349
+ activation=mish
350
+
351
+ [convolutional]
352
+ batch_normalize=1
353
+ filters=128
354
+ size=3
355
+ stride=1
356
+ pad=1
357
+ activation=mish
358
+
359
+ [shortcut]
360
+ from=-3
361
+ activation=linear
362
+
363
+ [convolutional]
364
+ batch_normalize=1
365
+ filters=128
366
+ size=1
367
+ stride=1
368
+ pad=1
369
+ activation=mish
370
+
371
+ [convolutional]
372
+ batch_normalize=1
373
+ filters=128
374
+ size=3
375
+ stride=1
376
+ pad=1
377
+ activation=mish
378
+
379
+ [shortcut]
380
+ from=-3
381
+ activation=linear
382
+
383
+ [convolutional]
384
+ batch_normalize=1
385
+ filters=128
386
+ size=1
387
+ stride=1
388
+ pad=1
389
+ activation=mish
390
+
391
+ [route]
392
+ layers = -1,-28
393
+
394
+ [convolutional]
395
+ batch_normalize=1
396
+ filters=256
397
+ size=1
398
+ stride=1
399
+ pad=1
400
+ activation=mish
401
+
402
+ # Downsample
403
+
404
+ [convolutional]
405
+ batch_normalize=1
406
+ filters=512
407
+ size=3
408
+ stride=2
409
+ pad=1
410
+ activation=mish
411
+
412
+ [convolutional]
413
+ batch_normalize=1
414
+ filters=256
415
+ size=1
416
+ stride=1
417
+ pad=1
418
+ activation=mish
419
+
420
+ [route]
421
+ layers = -2
422
+
423
+ [convolutional]
424
+ batch_normalize=1
425
+ filters=256
426
+ size=1
427
+ stride=1
428
+ pad=1
429
+ activation=mish
430
+
431
+ [convolutional]
432
+ batch_normalize=1
433
+ filters=256
434
+ size=1
435
+ stride=1
436
+ pad=1
437
+ activation=mish
438
+
439
+ [convolutional]
440
+ batch_normalize=1
441
+ filters=256
442
+ size=3
443
+ stride=1
444
+ pad=1
445
+ activation=mish
446
+
447
+ [shortcut]
448
+ from=-3
449
+ activation=linear
450
+
451
+
452
+ [convolutional]
453
+ batch_normalize=1
454
+ filters=256
455
+ size=1
456
+ stride=1
457
+ pad=1
458
+ activation=mish
459
+
460
+ [convolutional]
461
+ batch_normalize=1
462
+ filters=256
463
+ size=3
464
+ stride=1
465
+ pad=1
466
+ activation=mish
467
+
468
+ [shortcut]
469
+ from=-3
470
+ activation=linear
471
+
472
+
473
+ [convolutional]
474
+ batch_normalize=1
475
+ filters=256
476
+ size=1
477
+ stride=1
478
+ pad=1
479
+ activation=mish
480
+
481
+ [convolutional]
482
+ batch_normalize=1
483
+ filters=256
484
+ size=3
485
+ stride=1
486
+ pad=1
487
+ activation=mish
488
+
489
+ [shortcut]
490
+ from=-3
491
+ activation=linear
492
+
493
+
494
+ [convolutional]
495
+ batch_normalize=1
496
+ filters=256
497
+ size=1
498
+ stride=1
499
+ pad=1
500
+ activation=mish
501
+
502
+ [convolutional]
503
+ batch_normalize=1
504
+ filters=256
505
+ size=3
506
+ stride=1
507
+ pad=1
508
+ activation=mish
509
+
510
+ [shortcut]
511
+ from=-3
512
+ activation=linear
513
+
514
+
515
+ [convolutional]
516
+ batch_normalize=1
517
+ filters=256
518
+ size=1
519
+ stride=1
520
+ pad=1
521
+ activation=mish
522
+
523
+ [convolutional]
524
+ batch_normalize=1
525
+ filters=256
526
+ size=3
527
+ stride=1
528
+ pad=1
529
+ activation=mish
530
+
531
+ [shortcut]
532
+ from=-3
533
+ activation=linear
534
+
535
+
536
+ [convolutional]
537
+ batch_normalize=1
538
+ filters=256
539
+ size=1
540
+ stride=1
541
+ pad=1
542
+ activation=mish
543
+
544
+ [convolutional]
545
+ batch_normalize=1
546
+ filters=256
547
+ size=3
548
+ stride=1
549
+ pad=1
550
+ activation=mish
551
+
552
+ [shortcut]
553
+ from=-3
554
+ activation=linear
555
+
556
+
557
+ [convolutional]
558
+ batch_normalize=1
559
+ filters=256
560
+ size=1
561
+ stride=1
562
+ pad=1
563
+ activation=mish
564
+
565
+ [convolutional]
566
+ batch_normalize=1
567
+ filters=256
568
+ size=3
569
+ stride=1
570
+ pad=1
571
+ activation=mish
572
+
573
+ [shortcut]
574
+ from=-3
575
+ activation=linear
576
+
577
+ [convolutional]
578
+ batch_normalize=1
579
+ filters=256
580
+ size=1
581
+ stride=1
582
+ pad=1
583
+ activation=mish
584
+
585
+ [convolutional]
586
+ batch_normalize=1
587
+ filters=256
588
+ size=3
589
+ stride=1
590
+ pad=1
591
+ activation=mish
592
+
593
+ [shortcut]
594
+ from=-3
595
+ activation=linear
596
+
597
+ [convolutional]
598
+ batch_normalize=1
599
+ filters=256
600
+ size=1
601
+ stride=1
602
+ pad=1
603
+ activation=mish
604
+
605
+ [route]
606
+ layers = -1,-28
607
+
608
+ [convolutional]
609
+ batch_normalize=1
610
+ filters=512
611
+ size=1
612
+ stride=1
613
+ pad=1
614
+ activation=mish
615
+
616
+ # Downsample
617
+
618
+ [convolutional]
619
+ batch_normalize=1
620
+ filters=1024
621
+ size=3
622
+ stride=2
623
+ pad=1
624
+ activation=mish
625
+
626
+ [convolutional]
627
+ batch_normalize=1
628
+ filters=512
629
+ size=1
630
+ stride=1
631
+ pad=1
632
+ activation=mish
633
+
634
+ [route]
635
+ layers = -2
636
+
637
+ [convolutional]
638
+ batch_normalize=1
639
+ filters=512
640
+ size=1
641
+ stride=1
642
+ pad=1
643
+ activation=mish
644
+
645
+ [convolutional]
646
+ batch_normalize=1
647
+ filters=512
648
+ size=1
649
+ stride=1
650
+ pad=1
651
+ activation=mish
652
+
653
+ [convolutional]
654
+ batch_normalize=1
655
+ filters=512
656
+ size=3
657
+ stride=1
658
+ pad=1
659
+ activation=mish
660
+
661
+ [shortcut]
662
+ from=-3
663
+ activation=linear
664
+
665
+ [convolutional]
666
+ batch_normalize=1
667
+ filters=512
668
+ size=1
669
+ stride=1
670
+ pad=1
671
+ activation=mish
672
+
673
+ [convolutional]
674
+ batch_normalize=1
675
+ filters=512
676
+ size=3
677
+ stride=1
678
+ pad=1
679
+ activation=mish
680
+
681
+ [shortcut]
682
+ from=-3
683
+ activation=linear
684
+
685
+ [convolutional]
686
+ batch_normalize=1
687
+ filters=512
688
+ size=1
689
+ stride=1
690
+ pad=1
691
+ activation=mish
692
+
693
+ [convolutional]
694
+ batch_normalize=1
695
+ filters=512
696
+ size=3
697
+ stride=1
698
+ pad=1
699
+ activation=mish
700
+
701
+ [shortcut]
702
+ from=-3
703
+ activation=linear
704
+
705
+ [convolutional]
706
+ batch_normalize=1
707
+ filters=512
708
+ size=1
709
+ stride=1
710
+ pad=1
711
+ activation=mish
712
+
713
+ [convolutional]
714
+ batch_normalize=1
715
+ filters=512
716
+ size=3
717
+ stride=1
718
+ pad=1
719
+ activation=mish
720
+
721
+ [shortcut]
722
+ from=-3
723
+ activation=linear
724
+
725
+ [convolutional]
726
+ batch_normalize=1
727
+ filters=512
728
+ size=1
729
+ stride=1
730
+ pad=1
731
+ activation=mish
732
+
733
+ [route]
734
+ layers = -1,-16
735
+
736
+ [convolutional]
737
+ batch_normalize=1
738
+ filters=1024
739
+ size=1
740
+ stride=1
741
+ pad=1
742
+ activation=mish
743
+
744
+ ##########################
745
+
746
+ [convolutional]
747
+ batch_normalize=1
748
+ filters=512
749
+ size=1
750
+ stride=1
751
+ pad=1
752
+ activation=leaky
753
+
754
+ [convolutional]
755
+ batch_normalize=1
756
+ size=3
757
+ stride=1
758
+ pad=1
759
+ filters=1024
760
+ activation=leaky
761
+
762
+ [convolutional]
763
+ batch_normalize=1
764
+ filters=512
765
+ size=1
766
+ stride=1
767
+ pad=1
768
+ activation=leaky
769
+
770
+ ### SPP ###
771
+ [maxpool]
772
+ stride=1
773
+ size=5
774
+
775
+ [route]
776
+ layers=-2
777
+
778
+ [maxpool]
779
+ stride=1
780
+ size=9
781
+
782
+ [route]
783
+ layers=-4
784
+
785
+ [maxpool]
786
+ stride=1
787
+ size=13
788
+
789
+ [route]
790
+ layers=-1,-3,-5,-6
791
+ ### End SPP ###
792
+
793
+ [convolutional]
794
+ batch_normalize=1
795
+ filters=512
796
+ size=1
797
+ stride=1
798
+ pad=1
799
+ activation=leaky
800
+
801
+ [convolutional]
802
+ batch_normalize=1
803
+ size=3
804
+ stride=1
805
+ pad=1
806
+ filters=1024
807
+ activation=leaky
808
+
809
+ [convolutional]
810
+ batch_normalize=1
811
+ filters=512
812
+ size=1
813
+ stride=1
814
+ pad=1
815
+ activation=leaky
816
+
817
+ [convolutional]
818
+ batch_normalize=1
819
+ filters=256
820
+ size=1
821
+ stride=1
822
+ pad=1
823
+ activation=leaky
824
+
825
+ [upsample]
826
+ stride=2
827
+
828
+ [route]
829
+ layers = 85
830
+
831
+ [convolutional]
832
+ batch_normalize=1
833
+ filters=256
834
+ size=1
835
+ stride=1
836
+ pad=1
837
+ activation=leaky
838
+
839
+ [route]
840
+ layers = -1, -3
841
+
842
+ [convolutional]
843
+ batch_normalize=1
844
+ filters=256
845
+ size=1
846
+ stride=1
847
+ pad=1
848
+ activation=leaky
849
+
850
+ [convolutional]
851
+ batch_normalize=1
852
+ size=3
853
+ stride=1
854
+ pad=1
855
+ filters=512
856
+ activation=leaky
857
+
858
+ [convolutional]
859
+ batch_normalize=1
860
+ filters=256
861
+ size=1
862
+ stride=1
863
+ pad=1
864
+ activation=leaky
865
+
866
+ [convolutional]
867
+ batch_normalize=1
868
+ size=3
869
+ stride=1
870
+ pad=1
871
+ filters=512
872
+ activation=leaky
873
+
874
+ [convolutional]
875
+ batch_normalize=1
876
+ filters=256
877
+ size=1
878
+ stride=1
879
+ pad=1
880
+ activation=leaky
881
+
882
+ [convolutional]
883
+ batch_normalize=1
884
+ filters=128
885
+ size=1
886
+ stride=1
887
+ pad=1
888
+ activation=leaky
889
+
890
+ [upsample]
891
+ stride=2
892
+
893
+ [route]
894
+ layers = 54
895
+
896
+ [convolutional]
897
+ batch_normalize=1
898
+ filters=128
899
+ size=1
900
+ stride=1
901
+ pad=1
902
+ activation=leaky
903
+
904
+ [route]
905
+ layers = -1, -3
906
+
907
+ [convolutional]
908
+ batch_normalize=1
909
+ filters=128
910
+ size=1
911
+ stride=1
912
+ pad=1
913
+ activation=leaky
914
+
915
+ [convolutional]
916
+ batch_normalize=1
917
+ size=3
918
+ stride=1
919
+ pad=1
920
+ filters=256
921
+ activation=leaky
922
+
923
+ [convolutional]
924
+ batch_normalize=1
925
+ filters=128
926
+ size=1
927
+ stride=1
928
+ pad=1
929
+ activation=leaky
930
+
931
+ [convolutional]
932
+ batch_normalize=1
933
+ size=3
934
+ stride=1
935
+ pad=1
936
+ filters=256
937
+ activation=leaky
938
+
939
+ [convolutional]
940
+ batch_normalize=1
941
+ filters=128
942
+ size=1
943
+ stride=1
944
+ pad=1
945
+ activation=leaky
946
+
947
+ ##########################
948
+
949
+ [convolutional]
950
+ batch_normalize=1
951
+ size=3
952
+ stride=1
953
+ pad=1
954
+ filters=256
955
+ activation=leaky
956
+
957
+ [convolutional]
958
+ size=1
959
+ stride=1
960
+ pad=1
961
+ filters=255
962
+ activation=linear
963
+
964
+
965
+ [yolo]
966
+ mask = 0,1,2
967
+ anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
968
+ classes=80
969
+ num=9
970
+ jitter=.3
971
+ ignore_thresh = .7
972
+ truth_thresh = 1
973
+ scale_x_y = 1.2
974
+ iou_thresh=0.213
975
+ cls_normalizer=1.0
976
+ iou_normalizer=0.07
977
+ iou_loss=ciou
978
+ nms_kind=greedynms
979
+ beta_nms=0.6
980
+ max_delta=5
981
+
982
+
983
+ [route]
984
+ layers = -4
985
+
986
+ [convolutional]
987
+ batch_normalize=1
988
+ size=3
989
+ stride=2
990
+ pad=1
991
+ filters=256
992
+ activation=leaky
993
+
994
+ [route]
995
+ layers = -1, -16
996
+
997
+ [convolutional]
998
+ batch_normalize=1
999
+ filters=256
1000
+ size=1
1001
+ stride=1
1002
+ pad=1
1003
+ activation=leaky
1004
+
1005
+ [convolutional]
1006
+ batch_normalize=1
1007
+ size=3
1008
+ stride=1
1009
+ pad=1
1010
+ filters=512
1011
+ activation=leaky
1012
+
1013
+ [convolutional]
1014
+ batch_normalize=1
1015
+ filters=256
1016
+ size=1
1017
+ stride=1
1018
+ pad=1
1019
+ activation=leaky
1020
+
1021
+ [convolutional]
1022
+ batch_normalize=1
1023
+ size=3
1024
+ stride=1
1025
+ pad=1
1026
+ filters=512
1027
+ activation=leaky
1028
+
1029
+ [convolutional]
1030
+ batch_normalize=1
1031
+ filters=256
1032
+ size=1
1033
+ stride=1
1034
+ pad=1
1035
+ activation=leaky
1036
+
1037
+ [convolutional]
1038
+ batch_normalize=1
1039
+ size=3
1040
+ stride=1
1041
+ pad=1
1042
+ filters=512
1043
+ activation=leaky
1044
+
1045
+ [convolutional]
1046
+ size=1
1047
+ stride=1
1048
+ pad=1
1049
+ filters=255
1050
+ activation=linear
1051
+
1052
+
1053
+ [yolo]
1054
+ mask = 3,4,5
1055
+ anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
1056
+ classes=80
1057
+ num=9
1058
+ jitter=.3
1059
+ ignore_thresh = .7
1060
+ truth_thresh = 1
1061
+ scale_x_y = 1.1
1062
+ iou_thresh=0.213
1063
+ cls_normalizer=1.0
1064
+ iou_normalizer=0.07
1065
+ iou_loss=ciou
1066
+ nms_kind=greedynms
1067
+ beta_nms=0.6
1068
+ max_delta=5
1069
+
1070
+
1071
+ [route]
1072
+ layers = -4
1073
+
1074
+ [convolutional]
1075
+ batch_normalize=1
1076
+ size=3
1077
+ stride=2
1078
+ pad=1
1079
+ filters=512
1080
+ activation=leaky
1081
+
1082
+ [route]
1083
+ layers = -1, -37
1084
+
1085
+ [convolutional]
1086
+ batch_normalize=1
1087
+ filters=512
1088
+ size=1
1089
+ stride=1
1090
+ pad=1
1091
+ activation=leaky
1092
+
1093
+ [convolutional]
1094
+ batch_normalize=1
1095
+ size=3
1096
+ stride=1
1097
+ pad=1
1098
+ filters=1024
1099
+ activation=leaky
1100
+
1101
+ [convolutional]
1102
+ batch_normalize=1
1103
+ filters=512
1104
+ size=1
1105
+ stride=1
1106
+ pad=1
1107
+ activation=leaky
1108
+
1109
+ [convolutional]
1110
+ batch_normalize=1
1111
+ size=3
1112
+ stride=1
1113
+ pad=1
1114
+ filters=1024
1115
+ activation=leaky
1116
+
1117
+ [convolutional]
1118
+ batch_normalize=1
1119
+ filters=512
1120
+ size=1
1121
+ stride=1
1122
+ pad=1
1123
+ activation=leaky
1124
+
1125
+ [convolutional]
1126
+ batch_normalize=1
1127
+ size=3
1128
+ stride=1
1129
+ pad=1
1130
+ filters=1024
1131
+ activation=leaky
1132
+
1133
+ [convolutional]
1134
+ size=1
1135
+ stride=1
1136
+ pad=1
1137
+ filters=255
1138
+ activation=linear
1139
+
1140
+
1141
+ [yolo]
1142
+ mask = 6,7,8
1143
+ anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
1144
+ classes=80
1145
+ num=9
1146
+ jitter=.3
1147
+ ignore_thresh = .7
1148
+ truth_thresh = 1
1149
+ random=1
1150
+ scale_x_y = 1.05
1151
+ iou_thresh=0.213
1152
+ cls_normalizer=1.0
1153
+ iou_normalizer=0.07
1154
+ iou_loss=ciou
1155
+ nms_kind=greedynms
1156
+ beta_nms=0.6
1157
+ max_delta=5
1158
+
testspace/models/yolov4/yolov4.weights ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e8a4f6c62188738d86dc6898d82724ec0964d0eb9d2ae0f0a9d53d65d108d562
3
+ size 257717640
testspace/models/yolov4_csp/coco.names ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ person
2
+ bicycle
3
+ car
4
+ motorbike
5
+ aeroplane
6
+ bus
7
+ train
8
+ truck
9
+ boat
10
+ traffic light
11
+ fire hydrant
12
+ stop sign
13
+ parking meter
14
+ bench
15
+ bird
16
+ cat
17
+ dog
18
+ horse
19
+ sheep
20
+ cow
21
+ elephant
22
+ bear
23
+ zebra
24
+ giraffe
25
+ backpack
26
+ umbrella
27
+ handbag
28
+ tie
29
+ suitcase
30
+ frisbee
31
+ skis
32
+ snowboard
33
+ sports ball
34
+ kite
35
+ baseball bat
36
+ baseball glove
37
+ skateboard
38
+ surfboard
39
+ tennis racket
40
+ bottle
41
+ wine glass
42
+ cup
43
+ fork
44
+ knife
45
+ spoon
46
+ bowl
47
+ banana
48
+ apple
49
+ sandwich
50
+ orange
51
+ broccoli
52
+ carrot
53
+ hot dog
54
+ pizza
55
+ donut
56
+ cake
57
+ chair
58
+ sofa
59
+ pottedplant
60
+ bed
61
+ diningtable
62
+ toilet
63
+ tvmonitor
64
+ laptop
65
+ mouse
66
+ remote
67
+ keyboard
68
+ cell phone
69
+ microwave
70
+ oven
71
+ toaster
72
+ sink
73
+ refrigerator
74
+ book
75
+ clock
76
+ vase
77
+ scissors
78
+ teddy bear
79
+ hair drier
80
+ toothbrush
testspace/models/yolov4_csp/yolov4-csp.cfg ADDED
@@ -0,0 +1,1279 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [net]
2
+ # Testing
3
+ #batch=1
4
+ #subdivisions=1
5
+ # Training
6
+ batch=64
7
+ subdivisions=8
8
+ width=512
9
+ height=512
10
+ channels=3
11
+ momentum=0.949
12
+ decay=0.0005
13
+ angle=0
14
+ saturation = 1.5
15
+ exposure = 1.5
16
+ hue=.1
17
+
18
+ learning_rate=0.001
19
+ burn_in=1000
20
+ max_batches = 500500
21
+ policy=steps
22
+ steps=400000,450000
23
+ scales=.1,.1
24
+
25
+ mosaic=1
26
+
27
+ letter_box=1
28
+
29
+ ema_alpha=0.9998
30
+
31
+ #optimized_memory=1
32
+
33
+ #23:104x104 54:52x52 85:26x26 104:13x13 for 416
34
+
35
+
36
+
37
+ [convolutional]
38
+ batch_normalize=1
39
+ filters=32
40
+ size=3
41
+ stride=1
42
+ pad=1
43
+ activation=mish
44
+
45
+ # Downsample
46
+
47
+ [convolutional]
48
+ batch_normalize=1
49
+ filters=64
50
+ size=3
51
+ stride=2
52
+ pad=1
53
+ activation=mish
54
+
55
+ #[convolutional]
56
+ #batch_normalize=1
57
+ #filters=64
58
+ #size=1
59
+ #stride=1
60
+ #pad=1
61
+ #activation=mish
62
+
63
+ #[route]
64
+ #layers = -2
65
+
66
+ #[convolutional]
67
+ #batch_normalize=1
68
+ #filters=64
69
+ #size=1
70
+ #stride=1
71
+ #pad=1
72
+ #activation=mish
73
+
74
+ [convolutional]
75
+ batch_normalize=1
76
+ filters=32
77
+ size=1
78
+ stride=1
79
+ pad=1
80
+ activation=mish
81
+
82
+ [convolutional]
83
+ batch_normalize=1
84
+ filters=64
85
+ size=3
86
+ stride=1
87
+ pad=1
88
+ activation=mish
89
+
90
+ [shortcut]
91
+ from=-3
92
+ activation=linear
93
+
94
+ #[convolutional]
95
+ #batch_normalize=1
96
+ #filters=64
97
+ #size=1
98
+ #stride=1
99
+ #pad=1
100
+ #activation=mish
101
+
102
+ #[route]
103
+ #layers = -1,-7
104
+
105
+ #[convolutional]
106
+ #batch_normalize=1
107
+ #filters=64
108
+ #size=1
109
+ #stride=1
110
+ #pad=1
111
+ #activation=mish
112
+
113
+ # Downsample
114
+
115
+ [convolutional]
116
+ batch_normalize=1
117
+ filters=128
118
+ size=3
119
+ stride=2
120
+ pad=1
121
+ activation=mish
122
+
123
+ [convolutional]
124
+ batch_normalize=1
125
+ filters=64
126
+ size=1
127
+ stride=1
128
+ pad=1
129
+ activation=mish
130
+
131
+ [route]
132
+ layers = -2
133
+
134
+ [convolutional]
135
+ batch_normalize=1
136
+ filters=64
137
+ size=1
138
+ stride=1
139
+ pad=1
140
+ activation=mish
141
+
142
+ [convolutional]
143
+ batch_normalize=1
144
+ filters=64
145
+ size=1
146
+ stride=1
147
+ pad=1
148
+ activation=mish
149
+
150
+ [convolutional]
151
+ batch_normalize=1
152
+ filters=64
153
+ size=3
154
+ stride=1
155
+ pad=1
156
+ activation=mish
157
+
158
+ [shortcut]
159
+ from=-3
160
+ activation=linear
161
+
162
+ [convolutional]
163
+ batch_normalize=1
164
+ filters=64
165
+ size=1
166
+ stride=1
167
+ pad=1
168
+ activation=mish
169
+
170
+ [convolutional]
171
+ batch_normalize=1
172
+ filters=64
173
+ size=3
174
+ stride=1
175
+ pad=1
176
+ activation=mish
177
+
178
+ [shortcut]
179
+ from=-3
180
+ activation=linear
181
+
182
+ [convolutional]
183
+ batch_normalize=1
184
+ filters=64
185
+ size=1
186
+ stride=1
187
+ pad=1
188
+ activation=mish
189
+
190
+ [route]
191
+ layers = -1,-10
192
+
193
+ [convolutional]
194
+ batch_normalize=1
195
+ filters=128
196
+ size=1
197
+ stride=1
198
+ pad=1
199
+ activation=mish
200
+
201
+ # Downsample
202
+
203
+ [convolutional]
204
+ batch_normalize=1
205
+ filters=256
206
+ size=3
207
+ stride=2
208
+ pad=1
209
+ activation=mish
210
+
211
+ [convolutional]
212
+ batch_normalize=1
213
+ filters=128
214
+ size=1
215
+ stride=1
216
+ pad=1
217
+ activation=mish
218
+
219
+ [route]
220
+ layers = -2
221
+
222
+ [convolutional]
223
+ batch_normalize=1
224
+ filters=128
225
+ size=1
226
+ stride=1
227
+ pad=1
228
+ activation=mish
229
+
230
+ [convolutional]
231
+ batch_normalize=1
232
+ filters=128
233
+ size=1
234
+ stride=1
235
+ pad=1
236
+ activation=mish
237
+
238
+ [convolutional]
239
+ batch_normalize=1
240
+ filters=128
241
+ size=3
242
+ stride=1
243
+ pad=1
244
+ activation=mish
245
+
246
+ [shortcut]
247
+ from=-3
248
+ activation=linear
249
+
250
+ [convolutional]
251
+ batch_normalize=1
252
+ filters=128
253
+ size=1
254
+ stride=1
255
+ pad=1
256
+ activation=mish
257
+
258
+ [convolutional]
259
+ batch_normalize=1
260
+ filters=128
261
+ size=3
262
+ stride=1
263
+ pad=1
264
+ activation=mish
265
+
266
+ [shortcut]
267
+ from=-3
268
+ activation=linear
269
+
270
+ [convolutional]
271
+ batch_normalize=1
272
+ filters=128
273
+ size=1
274
+ stride=1
275
+ pad=1
276
+ activation=mish
277
+
278
+ [convolutional]
279
+ batch_normalize=1
280
+ filters=128
281
+ size=3
282
+ stride=1
283
+ pad=1
284
+ activation=mish
285
+
286
+ [shortcut]
287
+ from=-3
288
+ activation=linear
289
+
290
+ [convolutional]
291
+ batch_normalize=1
292
+ filters=128
293
+ size=1
294
+ stride=1
295
+ pad=1
296
+ activation=mish
297
+
298
+ [convolutional]
299
+ batch_normalize=1
300
+ filters=128
301
+ size=3
302
+ stride=1
303
+ pad=1
304
+ activation=mish
305
+
306
+ [shortcut]
307
+ from=-3
308
+ activation=linear
309
+
310
+
311
+ [convolutional]
312
+ batch_normalize=1
313
+ filters=128
314
+ size=1
315
+ stride=1
316
+ pad=1
317
+ activation=mish
318
+
319
+ [convolutional]
320
+ batch_normalize=1
321
+ filters=128
322
+ size=3
323
+ stride=1
324
+ pad=1
325
+ activation=mish
326
+
327
+ [shortcut]
328
+ from=-3
329
+ activation=linear
330
+
331
+ [convolutional]
332
+ batch_normalize=1
333
+ filters=128
334
+ size=1
335
+ stride=1
336
+ pad=1
337
+ activation=mish
338
+
339
+ [convolutional]
340
+ batch_normalize=1
341
+ filters=128
342
+ size=3
343
+ stride=1
344
+ pad=1
345
+ activation=mish
346
+
347
+ [shortcut]
348
+ from=-3
349
+ activation=linear
350
+
351
+ [convolutional]
352
+ batch_normalize=1
353
+ filters=128
354
+ size=1
355
+ stride=1
356
+ pad=1
357
+ activation=mish
358
+
359
+ [convolutional]
360
+ batch_normalize=1
361
+ filters=128
362
+ size=3
363
+ stride=1
364
+ pad=1
365
+ activation=mish
366
+
367
+ [shortcut]
368
+ from=-3
369
+ activation=linear
370
+
371
+ [convolutional]
372
+ batch_normalize=1
373
+ filters=128
374
+ size=1
375
+ stride=1
376
+ pad=1
377
+ activation=mish
378
+
379
+ [convolutional]
380
+ batch_normalize=1
381
+ filters=128
382
+ size=3
383
+ stride=1
384
+ pad=1
385
+ activation=mish
386
+
387
+ [shortcut]
388
+ from=-3
389
+ activation=linear
390
+
391
+ [convolutional]
392
+ batch_normalize=1
393
+ filters=128
394
+ size=1
395
+ stride=1
396
+ pad=1
397
+ activation=mish
398
+
399
+ [route]
400
+ layers = -1,-28
401
+
402
+ [convolutional]
403
+ batch_normalize=1
404
+ filters=256
405
+ size=1
406
+ stride=1
407
+ pad=1
408
+ activation=mish
409
+
410
+ # Downsample
411
+
412
+ [convolutional]
413
+ batch_normalize=1
414
+ filters=512
415
+ size=3
416
+ stride=2
417
+ pad=1
418
+ activation=mish
419
+
420
+ [convolutional]
421
+ batch_normalize=1
422
+ filters=256
423
+ size=1
424
+ stride=1
425
+ pad=1
426
+ activation=mish
427
+
428
+ [route]
429
+ layers = -2
430
+
431
+ [convolutional]
432
+ batch_normalize=1
433
+ filters=256
434
+ size=1
435
+ stride=1
436
+ pad=1
437
+ activation=mish
438
+
439
+ [convolutional]
440
+ batch_normalize=1
441
+ filters=256
442
+ size=1
443
+ stride=1
444
+ pad=1
445
+ activation=mish
446
+
447
+ [convolutional]
448
+ batch_normalize=1
449
+ filters=256
450
+ size=3
451
+ stride=1
452
+ pad=1
453
+ activation=mish
454
+
455
+ [shortcut]
456
+ from=-3
457
+ activation=linear
458
+
459
+
460
+ [convolutional]
461
+ batch_normalize=1
462
+ filters=256
463
+ size=1
464
+ stride=1
465
+ pad=1
466
+ activation=mish
467
+
468
+ [convolutional]
469
+ batch_normalize=1
470
+ filters=256
471
+ size=3
472
+ stride=1
473
+ pad=1
474
+ activation=mish
475
+
476
+ [shortcut]
477
+ from=-3
478
+ activation=linear
479
+
480
+
481
+ [convolutional]
482
+ batch_normalize=1
483
+ filters=256
484
+ size=1
485
+ stride=1
486
+ pad=1
487
+ activation=mish
488
+
489
+ [convolutional]
490
+ batch_normalize=1
491
+ filters=256
492
+ size=3
493
+ stride=1
494
+ pad=1
495
+ activation=mish
496
+
497
+ [shortcut]
498
+ from=-3
499
+ activation=linear
500
+
501
+
502
+ [convolutional]
503
+ batch_normalize=1
504
+ filters=256
505
+ size=1
506
+ stride=1
507
+ pad=1
508
+ activation=mish
509
+
510
+ [convolutional]
511
+ batch_normalize=1
512
+ filters=256
513
+ size=3
514
+ stride=1
515
+ pad=1
516
+ activation=mish
517
+
518
+ [shortcut]
519
+ from=-3
520
+ activation=linear
521
+
522
+
523
+ [convolutional]
524
+ batch_normalize=1
525
+ filters=256
526
+ size=1
527
+ stride=1
528
+ pad=1
529
+ activation=mish
530
+
531
+ [convolutional]
532
+ batch_normalize=1
533
+ filters=256
534
+ size=3
535
+ stride=1
536
+ pad=1
537
+ activation=mish
538
+
539
+ [shortcut]
540
+ from=-3
541
+ activation=linear
542
+
543
+
544
+ [convolutional]
545
+ batch_normalize=1
546
+ filters=256
547
+ size=1
548
+ stride=1
549
+ pad=1
550
+ activation=mish
551
+
552
+ [convolutional]
553
+ batch_normalize=1
554
+ filters=256
555
+ size=3
556
+ stride=1
557
+ pad=1
558
+ activation=mish
559
+
560
+ [shortcut]
561
+ from=-3
562
+ activation=linear
563
+
564
+
565
+ [convolutional]
566
+ batch_normalize=1
567
+ filters=256
568
+ size=1
569
+ stride=1
570
+ pad=1
571
+ activation=mish
572
+
573
+ [convolutional]
574
+ batch_normalize=1
575
+ filters=256
576
+ size=3
577
+ stride=1
578
+ pad=1
579
+ activation=mish
580
+
581
+ [shortcut]
582
+ from=-3
583
+ activation=linear
584
+
585
+ [convolutional]
586
+ batch_normalize=1
587
+ filters=256
588
+ size=1
589
+ stride=1
590
+ pad=1
591
+ activation=mish
592
+
593
+ [convolutional]
594
+ batch_normalize=1
595
+ filters=256
596
+ size=3
597
+ stride=1
598
+ pad=1
599
+ activation=mish
600
+
601
+ [shortcut]
602
+ from=-3
603
+ activation=linear
604
+
605
+ [convolutional]
606
+ batch_normalize=1
607
+ filters=256
608
+ size=1
609
+ stride=1
610
+ pad=1
611
+ activation=mish
612
+
613
+ [route]
614
+ layers = -1,-28
615
+
616
+ [convolutional]
617
+ batch_normalize=1
618
+ filters=512
619
+ size=1
620
+ stride=1
621
+ pad=1
622
+ activation=mish
623
+
624
+ # Downsample
625
+
626
+ [convolutional]
627
+ batch_normalize=1
628
+ filters=1024
629
+ size=3
630
+ stride=2
631
+ pad=1
632
+ activation=mish
633
+
634
+ [convolutional]
635
+ batch_normalize=1
636
+ filters=512
637
+ size=1
638
+ stride=1
639
+ pad=1
640
+ activation=mish
641
+
642
+ [route]
643
+ layers = -2
644
+
645
+ [convolutional]
646
+ batch_normalize=1
647
+ filters=512
648
+ size=1
649
+ stride=1
650
+ pad=1
651
+ activation=mish
652
+
653
+ [convolutional]
654
+ batch_normalize=1
655
+ filters=512
656
+ size=1
657
+ stride=1
658
+ pad=1
659
+ activation=mish
660
+
661
+ [convolutional]
662
+ batch_normalize=1
663
+ filters=512
664
+ size=3
665
+ stride=1
666
+ pad=1
667
+ activation=mish
668
+
669
+ [shortcut]
670
+ from=-3
671
+ activation=linear
672
+
673
+ [convolutional]
674
+ batch_normalize=1
675
+ filters=512
676
+ size=1
677
+ stride=1
678
+ pad=1
679
+ activation=mish
680
+
681
+ [convolutional]
682
+ batch_normalize=1
683
+ filters=512
684
+ size=3
685
+ stride=1
686
+ pad=1
687
+ activation=mish
688
+
689
+ [shortcut]
690
+ from=-3
691
+ activation=linear
692
+
693
+ [convolutional]
694
+ batch_normalize=1
695
+ filters=512
696
+ size=1
697
+ stride=1
698
+ pad=1
699
+ activation=mish
700
+
701
+ [convolutional]
702
+ batch_normalize=1
703
+ filters=512
704
+ size=3
705
+ stride=1
706
+ pad=1
707
+ activation=mish
708
+
709
+ [shortcut]
710
+ from=-3
711
+ activation=linear
712
+
713
+ [convolutional]
714
+ batch_normalize=1
715
+ filters=512
716
+ size=1
717
+ stride=1
718
+ pad=1
719
+ activation=mish
720
+
721
+ [convolutional]
722
+ batch_normalize=1
723
+ filters=512
724
+ size=3
725
+ stride=1
726
+ pad=1
727
+ activation=mish
728
+
729
+ [shortcut]
730
+ from=-3
731
+ activation=linear
732
+
733
+ [convolutional]
734
+ batch_normalize=1
735
+ filters=512
736
+ size=1
737
+ stride=1
738
+ pad=1
739
+ activation=mish
740
+
741
+ [route]
742
+ layers = -1,-16
743
+
744
+ [convolutional]
745
+ batch_normalize=1
746
+ filters=1024
747
+ size=1
748
+ stride=1
749
+ pad=1
750
+ activation=mish
751
+
752
+ ##########################
753
+
754
+ [convolutional]
755
+ batch_normalize=1
756
+ filters=512
757
+ size=1
758
+ stride=1
759
+ pad=1
760
+ activation=mish
761
+
762
+ [route]
763
+ layers = -2
764
+
765
+ [convolutional]
766
+ batch_normalize=1
767
+ filters=512
768
+ size=1
769
+ stride=1
770
+ pad=1
771
+ activation=mish
772
+
773
+ [convolutional]
774
+ batch_normalize=1
775
+ size=3
776
+ stride=1
777
+ pad=1
778
+ filters=512
779
+ activation=mish
780
+
781
+ [convolutional]
782
+ batch_normalize=1
783
+ filters=512
784
+ size=1
785
+ stride=1
786
+ pad=1
787
+ activation=mish
788
+
789
+ ### SPP ###
790
+ [maxpool]
791
+ stride=1
792
+ size=5
793
+
794
+ [route]
795
+ layers=-2
796
+
797
+ [maxpool]
798
+ stride=1
799
+ size=9
800
+
801
+ [route]
802
+ layers=-4
803
+
804
+ [maxpool]
805
+ stride=1
806
+ size=13
807
+
808
+ [route]
809
+ layers=-1,-3,-5,-6
810
+ ### End SPP ###
811
+
812
+ [convolutional]
813
+ batch_normalize=1
814
+ filters=512
815
+ size=1
816
+ stride=1
817
+ pad=1
818
+ activation=mish
819
+
820
+ [convolutional]
821
+ batch_normalize=1
822
+ size=3
823
+ stride=1
824
+ pad=1
825
+ filters=512
826
+ activation=mish
827
+
828
+ [route]
829
+ layers = -1, -13
830
+
831
+ [convolutional]
832
+ batch_normalize=1
833
+ filters=512
834
+ size=1
835
+ stride=1
836
+ pad=1
837
+ activation=mish
838
+
839
+ [convolutional]
840
+ batch_normalize=1
841
+ filters=256
842
+ size=1
843
+ stride=1
844
+ pad=1
845
+ activation=mish
846
+
847
+ [upsample]
848
+ stride=2
849
+
850
+ [route]
851
+ layers = 79
852
+
853
+ [convolutional]
854
+ batch_normalize=1
855
+ filters=256
856
+ size=1
857
+ stride=1
858
+ pad=1
859
+ activation=mish
860
+
861
+ [route]
862
+ layers = -1, -3
863
+
864
+ [convolutional]
865
+ batch_normalize=1
866
+ filters=256
867
+ size=1
868
+ stride=1
869
+ pad=1
870
+ activation=mish
871
+
872
+ [convolutional]
873
+ batch_normalize=1
874
+ filters=256
875
+ size=1
876
+ stride=1
877
+ pad=1
878
+ activation=mish
879
+
880
+ [route]
881
+ layers = -2
882
+
883
+ [convolutional]
884
+ batch_normalize=1
885
+ filters=256
886
+ size=1
887
+ stride=1
888
+ pad=1
889
+ activation=mish
890
+
891
+ [convolutional]
892
+ batch_normalize=1
893
+ size=3
894
+ stride=1
895
+ pad=1
896
+ filters=256
897
+ activation=mish
898
+
899
+ [convolutional]
900
+ batch_normalize=1
901
+ filters=256
902
+ size=1
903
+ stride=1
904
+ pad=1
905
+ activation=mish
906
+
907
+ [convolutional]
908
+ batch_normalize=1
909
+ size=3
910
+ stride=1
911
+ pad=1
912
+ filters=256
913
+ activation=mish
914
+
915
+ [route]
916
+ layers = -1, -6
917
+
918
+ [convolutional]
919
+ batch_normalize=1
920
+ filters=256
921
+ size=1
922
+ stride=1
923
+ pad=1
924
+ activation=mish
925
+
926
+ [convolutional]
927
+ batch_normalize=1
928
+ filters=128
929
+ size=1
930
+ stride=1
931
+ pad=1
932
+ activation=mish
933
+
934
+ [upsample]
935
+ stride=2
936
+
937
+ [route]
938
+ layers = 48
939
+
940
+ [convolutional]
941
+ batch_normalize=1
942
+ filters=128
943
+ size=1
944
+ stride=1
945
+ pad=1
946
+ activation=mish
947
+
948
+ [route]
949
+ layers = -1, -3
950
+
951
+ [convolutional]
952
+ batch_normalize=1
953
+ filters=128
954
+ size=1
955
+ stride=1
956
+ pad=1
957
+ activation=mish
958
+
959
+ [convolutional]
960
+ batch_normalize=1
961
+ filters=128
962
+ size=1
963
+ stride=1
964
+ pad=1
965
+ activation=mish
966
+
967
+ [route]
968
+ layers = -2
969
+
970
+ [convolutional]
971
+ batch_normalize=1
972
+ filters=128
973
+ size=1
974
+ stride=1
975
+ pad=1
976
+ activation=mish
977
+
978
+ [convolutional]
979
+ batch_normalize=1
980
+ size=3
981
+ stride=1
982
+ pad=1
983
+ filters=128
984
+ activation=mish
985
+
986
+ [convolutional]
987
+ batch_normalize=1
988
+ filters=128
989
+ size=1
990
+ stride=1
991
+ pad=1
992
+ activation=mish
993
+
994
+ [convolutional]
995
+ batch_normalize=1
996
+ size=3
997
+ stride=1
998
+ pad=1
999
+ filters=128
1000
+ activation=mish
1001
+
1002
+ [route]
1003
+ layers = -1, -6
1004
+
1005
+ [convolutional]
1006
+ batch_normalize=1
1007
+ filters=128
1008
+ size=1
1009
+ stride=1
1010
+ pad=1
1011
+ activation=mish
1012
+
1013
+ ##########################
1014
+
1015
+ [convolutional]
1016
+ batch_normalize=1
1017
+ size=3
1018
+ stride=1
1019
+ pad=1
1020
+ filters=256
1021
+ activation=mish
1022
+
1023
+ [convolutional]
1024
+ size=1
1025
+ stride=1
1026
+ pad=1
1027
+ filters=255
1028
+ activation=logistic
1029
+
1030
+
1031
+ [yolo]
1032
+ mask = 0,1,2
1033
+ anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
1034
+ classes=80
1035
+ num=9
1036
+ jitter=.1
1037
+ scale_x_y = 2.0
1038
+ objectness_smooth=0
1039
+ ignore_thresh = .7
1040
+ truth_thresh = 1
1041
+ #random=1
1042
+ resize=1.5
1043
+ iou_thresh=0.2
1044
+ iou_normalizer=0.05
1045
+ cls_normalizer=0.5
1046
+ obj_normalizer=4.0
1047
+ iou_loss=ciou
1048
+ nms_kind=diounms
1049
+ beta_nms=0.6
1050
+ new_coords=1
1051
+ max_delta=5
1052
+
1053
+ [route]
1054
+ layers = -4
1055
+
1056
+ [convolutional]
1057
+ batch_normalize=1
1058
+ size=3
1059
+ stride=2
1060
+ pad=1
1061
+ filters=256
1062
+ activation=mish
1063
+
1064
+ [route]
1065
+ layers = -1, -20
1066
+
1067
+ [convolutional]
1068
+ batch_normalize=1
1069
+ filters=256
1070
+ size=1
1071
+ stride=1
1072
+ pad=1
1073
+ activation=mish
1074
+
1075
+ [convolutional]
1076
+ batch_normalize=1
1077
+ filters=256
1078
+ size=1
1079
+ stride=1
1080
+ pad=1
1081
+ activation=mish
1082
+
1083
+ [route]
1084
+ layers = -2
1085
+
1086
+ [convolutional]
1087
+ batch_normalize=1
1088
+ filters=256
1089
+ size=1
1090
+ stride=1
1091
+ pad=1
1092
+ activation=mish
1093
+
1094
+ [convolutional]
1095
+ batch_normalize=1
1096
+ size=3
1097
+ stride=1
1098
+ pad=1
1099
+ filters=256
1100
+ activation=mish
1101
+
1102
+ [convolutional]
1103
+ batch_normalize=1
1104
+ filters=256
1105
+ size=1
1106
+ stride=1
1107
+ pad=1
1108
+ activation=mish
1109
+
1110
+ [convolutional]
1111
+ batch_normalize=1
1112
+ size=3
1113
+ stride=1
1114
+ pad=1
1115
+ filters=256
1116
+ activation=mish
1117
+
1118
+ [route]
1119
+ layers = -1,-6
1120
+
1121
+ [convolutional]
1122
+ batch_normalize=1
1123
+ filters=256
1124
+ size=1
1125
+ stride=1
1126
+ pad=1
1127
+ activation=mish
1128
+
1129
+ [convolutional]
1130
+ batch_normalize=1
1131
+ size=3
1132
+ stride=1
1133
+ pad=1
1134
+ filters=512
1135
+ activation=mish
1136
+
1137
+ [convolutional]
1138
+ size=1
1139
+ stride=1
1140
+ pad=1
1141
+ filters=255
1142
+ activation=logistic
1143
+
1144
+
1145
+ [yolo]
1146
+ mask = 3,4,5
1147
+ anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
1148
+ classes=80
1149
+ num=9
1150
+ jitter=.1
1151
+ scale_x_y = 2.0
1152
+ objectness_smooth=1
1153
+ ignore_thresh = .7
1154
+ truth_thresh = 1
1155
+ #random=1
1156
+ resize=1.5
1157
+ iou_thresh=0.2
1158
+ iou_normalizer=0.05
1159
+ cls_normalizer=0.5
1160
+ obj_normalizer=1.0
1161
+ iou_loss=ciou
1162
+ nms_kind=diounms
1163
+ beta_nms=0.6
1164
+ new_coords=1
1165
+ max_delta=5
1166
+
1167
+ [route]
1168
+ layers = -4
1169
+
1170
+ [convolutional]
1171
+ batch_normalize=1
1172
+ size=3
1173
+ stride=2
1174
+ pad=1
1175
+ filters=512
1176
+ activation=mish
1177
+
1178
+ [route]
1179
+ layers = -1, -49
1180
+
1181
+ [convolutional]
1182
+ batch_normalize=1
1183
+ filters=512
1184
+ size=1
1185
+ stride=1
1186
+ pad=1
1187
+ activation=mish
1188
+
1189
+ [convolutional]
1190
+ batch_normalize=1
1191
+ filters=512
1192
+ size=1
1193
+ stride=1
1194
+ pad=1
1195
+ activation=mish
1196
+
1197
+ [route]
1198
+ layers = -2
1199
+
1200
+ [convolutional]
1201
+ batch_normalize=1
1202
+ filters=512
1203
+ size=1
1204
+ stride=1
1205
+ pad=1
1206
+ activation=mish
1207
+
1208
+ [convolutional]
1209
+ batch_normalize=1
1210
+ size=3
1211
+ stride=1
1212
+ pad=1
1213
+ filters=512
1214
+ activation=mish
1215
+
1216
+ [convolutional]
1217
+ batch_normalize=1
1218
+ filters=512
1219
+ size=1
1220
+ stride=1
1221
+ pad=1
1222
+ activation=mish
1223
+
1224
+ [convolutional]
1225
+ batch_normalize=1
1226
+ size=3
1227
+ stride=1
1228
+ pad=1
1229
+ filters=512
1230
+ activation=mish
1231
+
1232
+ [route]
1233
+ layers = -1,-6
1234
+
1235
+ [convolutional]
1236
+ batch_normalize=1
1237
+ filters=512
1238
+ size=1
1239
+ stride=1
1240
+ pad=1
1241
+ activation=mish
1242
+
1243
+ [convolutional]
1244
+ batch_normalize=1
1245
+ size=3
1246
+ stride=1
1247
+ pad=1
1248
+ filters=1024
1249
+ activation=mish
1250
+
1251
+ [convolutional]
1252
+ size=1
1253
+ stride=1
1254
+ pad=1
1255
+ filters=255
1256
+ activation=logistic
1257
+
1258
+
1259
+ [yolo]
1260
+ mask = 6,7,8
1261
+ anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
1262
+ classes=80
1263
+ num=9
1264
+ jitter=.1
1265
+ scale_x_y = 2.0
1266
+ objectness_smooth=1
1267
+ ignore_thresh = .7
1268
+ truth_thresh = 1
1269
+ #random=1
1270
+ resize=1.5
1271
+ iou_thresh=0.2
1272
+ iou_normalizer=0.05
1273
+ cls_normalizer=0.5
1274
+ obj_normalizer=0.4
1275
+ iou_loss=ciou
1276
+ nms_kind=diounms
1277
+ beta_nms=0.6
1278
+ new_coords=1
1279
+ max_delta=2
testspace/models/yolov4_csp/yolov4-csp.weights ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:019496affba568f7439e54797a1772657bb01126b707fbd93407c0b20c20dca1
3
+ size 211944840
testspace/models/yolov5/coco.names ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ person
2
+ bicycle
3
+ car
4
+ motorbike
5
+ aeroplane
6
+ bus
7
+ train
8
+ truck
9
+ boat
10
+ traffic light
11
+ fire hydrant
12
+ stop sign
13
+ parking meter
14
+ bench
15
+ bird
16
+ cat
17
+ dog
18
+ horse
19
+ sheep
20
+ cow
21
+ elephant
22
+ bear
23
+ zebra
24
+ giraffe
25
+ backpack
26
+ umbrella
27
+ handbag
28
+ tie
29
+ suitcase
30
+ frisbee
31
+ skis
32
+ snowboard
33
+ sports ball
34
+ kite
35
+ baseball bat
36
+ baseball glove
37
+ skateboard
38
+ surfboard
39
+ tennis racket
40
+ bottle
41
+ wine glass
42
+ cup
43
+ fork
44
+ knife
45
+ spoon
46
+ bowl
47
+ banana
48
+ apple
49
+ sandwich
50
+ orange
51
+ broccoli
52
+ carrot
53
+ hot dog
54
+ pizza
55
+ donut
56
+ cake
57
+ chair
58
+ sofa
59
+ pottedplant
60
+ bed
61
+ diningtable
62
+ toilet
63
+ tvmonitor
64
+ laptop
65
+ mouse
66
+ remote
67
+ keyboard
68
+ cell phone
69
+ microwave
70
+ oven
71
+ toaster
72
+ sink
73
+ refrigerator
74
+ book
75
+ clock
76
+ vase
77
+ scissors
78
+ teddy bear
79
+ hair drier
80
+ toothbrush
testspace/models/yolov5/yolov5l.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d354c552d2562a020b24f695b75abed9e4298781eba3c9a2d55c9738479dd0c
3
+ size 93344111
testspace/models/yolov5/yolov5m.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c46186375067d43cf479d014ce8cd3af4c1489fb13b4ebf4e2470d9def12f7d9
3
+ size 42606277
testspace/models/yolov5/yolov5n.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:04f0e55c26f58d17145b36045780fe1250d5bd2187543e11568e5141d05b3262
3
+ size 3981910
testspace/models/yolov5/yolov5s.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8bc25a47abdbe2fd23e30eb948746bf856b031ea3cc815166687f52db9f8c659
3
+ size 14698981
testspace/models/yolov5/yolov5x.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:81dc04d46512126d1545b7898abf9451526be7abdf4a748a48185dd1ccec42f8
3
+ size 173701522
testspace/models/yolov6/coco.names ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ person
2
+ bicycle
3
+ car
4
+ motorbike
5
+ aeroplane
6
+ bus
7
+ train
8
+ truck
9
+ boat
10
+ traffic light
11
+ fire hydrant
12
+ stop sign
13
+ parking meter
14
+ bench
15
+ bird
16
+ cat
17
+ dog
18
+ horse
19
+ sheep
20
+ cow
21
+ elephant
22
+ bear
23
+ zebra
24
+ giraffe
25
+ backpack
26
+ umbrella
27
+ handbag
28
+ tie
29
+ suitcase
30
+ frisbee
31
+ skis
32
+ snowboard
33
+ sports ball
34
+ kite
35
+ baseball bat
36
+ baseball glove
37
+ skateboard
38
+ surfboard
39
+ tennis racket
40
+ bottle
41
+ wine glass
42
+ cup
43
+ fork
44
+ knife
45
+ spoon
46
+ bowl
47
+ banana
48
+ apple
49
+ sandwich
50
+ orange
51
+ broccoli
52
+ carrot
53
+ hot dog
54
+ pizza
55
+ donut
56
+ cake
57
+ chair
58
+ sofa
59
+ pottedplant
60
+ bed
61
+ diningtable
62
+ toilet
63
+ tvmonitor
64
+ laptop
65
+ mouse
66
+ remote
67
+ keyboard
68
+ cell phone
69
+ microwave
70
+ oven
71
+ toaster
72
+ sink
73
+ refrigerator
74
+ book
75
+ clock
76
+ vase
77
+ scissors
78
+ teddy bear
79
+ hair drier
80
+ toothbrush
testspace/models/yolov6/yolov6l.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ba0165ee0d4da80f4e1b0e2b2812dd4c1a0c2ffc495d6b2abc936ee71741e4fe
3
+ size 238667120
testspace/models/yolov6/yolov6m.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:336ad954faa28fb902b509c1ffe673b71faa49eacf5e4d6694775d80fdfe5091
3
+ size 139620578
testspace/models/yolov6/yolov6n.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f716bde8432f6960d1133cbbebfe576d7f7b11b0222ef502b982ddefddaee709
3
+ size 18758592
testspace/models/yolov6/yolov6s.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e00eff8953ac88bbbbc85c306dc18850e5a6b545864f5ab8e2c4e7b824f072bf
3
+ size 74320101
testspace/models/yolov7/coco.names ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ person
2
+ bicycle
3
+ car
4
+ motorbike
5
+ aeroplane
6
+ bus
7
+ train
8
+ truck
9
+ boat
10
+ traffic light
11
+ fire hydrant
12
+ stop sign
13
+ parking meter
14
+ bench
15
+ bird
16
+ cat
17
+ dog
18
+ horse
19
+ sheep
20
+ cow
21
+ elephant
22
+ bear
23
+ zebra
24
+ giraffe
25
+ backpack
26
+ umbrella
27
+ handbag
28
+ tie
29
+ suitcase
30
+ frisbee
31
+ skis
32
+ snowboard
33
+ sports ball
34
+ kite
35
+ baseball bat
36
+ baseball glove
37
+ skateboard
38
+ surfboard
39
+ tennis racket
40
+ bottle
41
+ wine glass
42
+ cup
43
+ fork
44
+ knife
45
+ spoon
46
+ bowl
47
+ banana
48
+ apple
49
+ sandwich
50
+ orange
51
+ broccoli
52
+ carrot
53
+ hot dog
54
+ pizza
55
+ donut
56
+ cake
57
+ chair
58
+ sofa
59
+ pottedplant
60
+ bed
61
+ diningtable
62
+ toilet
63
+ tvmonitor
64
+ laptop
65
+ mouse
66
+ remote
67
+ keyboard
68
+ cell phone
69
+ microwave
70
+ oven
71
+ toaster
72
+ sink
73
+ refrigerator
74
+ book
75
+ clock
76
+ vase
77
+ scissors
78
+ teddy bear
79
+ hair drier
80
+ toothbrush
testspace/models/yolov7/yolov7-tiny.cfg ADDED
@@ -0,0 +1,706 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [net]
2
+ # Testing
3
+ #batch=1
4
+ #subdivisions=1
5
+ # Training
6
+ batch=64
7
+ subdivisions=1
8
+ width=416
9
+ height=416
10
+ channels=3
11
+ momentum=0.9
12
+ decay=0.0005
13
+ angle=0
14
+ saturation = 1.5
15
+ exposure = 1.5
16
+ hue=.1
17
+
18
+ learning_rate=0.00261
19
+ burn_in=1000
20
+
21
+ max_batches = 2000200
22
+ policy=steps
23
+ steps=1600000,1800000
24
+ scales=.1,.1
25
+
26
+ # 0
27
+ [convolutional]
28
+ batch_normalize=1
29
+ filters=32
30
+ size=3
31
+ stride=2
32
+ pad=1
33
+ activation=leaky
34
+
35
+ # 1
36
+ [convolutional]
37
+ batch_normalize=1
38
+ filters=64
39
+ size=3
40
+ stride=2
41
+ pad=1
42
+ activation=leaky
43
+
44
+ [convolutional]
45
+ batch_normalize=1
46
+ filters=32
47
+ size=1
48
+ stride=1
49
+ pad=1
50
+ activation=leaky
51
+
52
+ [route]
53
+ layers=-2
54
+
55
+ [convolutional]
56
+ batch_normalize=1
57
+ filters=32
58
+ size=1
59
+ stride=1
60
+ pad=1
61
+ activation=leaky
62
+
63
+ [convolutional]
64
+ batch_normalize=1
65
+ filters=32
66
+ size=3
67
+ stride=1
68
+ pad=1
69
+ activation=leaky
70
+
71
+ [convolutional]
72
+ batch_normalize=1
73
+ filters=32
74
+ size=3
75
+ stride=1
76
+ pad=1
77
+ activation=leaky
78
+
79
+ [route]
80
+ layers = -5,-3,-2,-1
81
+
82
+ # 8
83
+ [convolutional]
84
+ batch_normalize=1
85
+ filters=64
86
+ size=1
87
+ stride=1
88
+ pad=1
89
+ activation=leaky
90
+
91
+ [maxpool]
92
+ size=2
93
+ stride=2
94
+
95
+ [convolutional]
96
+ batch_normalize=1
97
+ filters=64
98
+ size=1
99
+ stride=1
100
+ pad=1
101
+ activation=leaky
102
+
103
+ [route]
104
+ layers=-2
105
+
106
+ [convolutional]
107
+ batch_normalize=1
108
+ filters=64
109
+ size=1
110
+ stride=1
111
+ pad=1
112
+ activation=leaky
113
+
114
+ [convolutional]
115
+ batch_normalize=1
116
+ filters=64
117
+ size=3
118
+ stride=1
119
+ pad=1
120
+ activation=leaky
121
+
122
+ [convolutional]
123
+ batch_normalize=1
124
+ filters=64
125
+ size=3
126
+ stride=1
127
+ pad=1
128
+ activation=leaky
129
+
130
+ [route]
131
+ layers = -5,-3,-2,-1
132
+
133
+ # 16
134
+ [convolutional]
135
+ batch_normalize=1
136
+ filters=128
137
+ size=1
138
+ stride=1
139
+ pad=1
140
+ activation=leaky
141
+
142
+ [maxpool]
143
+ size=2
144
+ stride=2
145
+
146
+ [convolutional]
147
+ batch_normalize=1
148
+ filters=128
149
+ size=1
150
+ stride=1
151
+ pad=1
152
+ activation=leaky
153
+
154
+ [route]
155
+ layers=-2
156
+
157
+ [convolutional]
158
+ batch_normalize=1
159
+ filters=128
160
+ size=1
161
+ stride=1
162
+ pad=1
163
+ activation=leaky
164
+
165
+ [convolutional]
166
+ batch_normalize=1
167
+ filters=128
168
+ size=3
169
+ stride=1
170
+ pad=1
171
+ activation=leaky
172
+
173
+ [convolutional]
174
+ batch_normalize=1
175
+ filters=128
176
+ size=3
177
+ stride=1
178
+ pad=1
179
+ activation=leaky
180
+
181
+ [route]
182
+ layers = -5,-3,-2,-1
183
+
184
+ # 24
185
+ [convolutional]
186
+ batch_normalize=1
187
+ filters=256
188
+ size=1
189
+ stride=1
190
+ pad=1
191
+ activation=leaky
192
+
193
+ [maxpool]
194
+ size=2
195
+ stride=2
196
+
197
+ [convolutional]
198
+ batch_normalize=1
199
+ filters=256
200
+ size=1
201
+ stride=1
202
+ pad=1
203
+ activation=leaky
204
+
205
+ [route]
206
+ layers=-2
207
+
208
+ [convolutional]
209
+ batch_normalize=1
210
+ filters=256
211
+ size=1
212
+ stride=1
213
+ pad=1
214
+ activation=leaky
215
+
216
+ [convolutional]
217
+ batch_normalize=1
218
+ filters=256
219
+ size=3
220
+ stride=1
221
+ pad=1
222
+ activation=leaky
223
+
224
+ [convolutional]
225
+ batch_normalize=1
226
+ filters=256
227
+ size=3
228
+ stride=1
229
+ pad=1
230
+ activation=leaky
231
+
232
+ [route]
233
+ layers = -5,-3,-2,-1
234
+
235
+ # 32
236
+ [convolutional]
237
+ batch_normalize=1
238
+ filters=512
239
+ size=1
240
+ stride=1
241
+ pad=1
242
+ activation=leaky
243
+
244
+
245
+ ##################################
246
+
247
+ ### SPPCSP ###
248
+ [convolutional]
249
+ batch_normalize=1
250
+ filters=256
251
+ size=1
252
+ stride=1
253
+ pad=1
254
+ activation=leaky
255
+
256
+ [route]
257
+ layers = -2
258
+
259
+ [convolutional]
260
+ batch_normalize=1
261
+ filters=256
262
+ size=1
263
+ stride=1
264
+ pad=1
265
+ activation=leaky
266
+
267
+ ### SPP ###
268
+ [maxpool]
269
+ stride=1
270
+ size=5
271
+
272
+ [route]
273
+ layers=-2
274
+
275
+ [maxpool]
276
+ stride=1
277
+ size=9
278
+
279
+ [route]
280
+ layers=-4
281
+
282
+ [maxpool]
283
+ stride=1
284
+ size=13
285
+
286
+ [route]
287
+ layers=-1,-3,-5,-6
288
+ ### End SPP ###
289
+
290
+ [convolutional]
291
+ batch_normalize=1
292
+ filters=256
293
+ size=1
294
+ stride=1
295
+ pad=1
296
+ activation=leaky
297
+
298
+ [route]
299
+ layers = -10,-1
300
+
301
+ # 44
302
+ [convolutional]
303
+ batch_normalize=1
304
+ filters=256
305
+ size=1
306
+ stride=1
307
+ pad=1
308
+ activation=leaky
309
+ ### End SPPCSP ###
310
+
311
+ [convolutional]
312
+ batch_normalize=1
313
+ filters=128
314
+ size=1
315
+ stride=1
316
+ pad=1
317
+ activation=leaky
318
+
319
+ [upsample]
320
+ stride=2
321
+
322
+ [route]
323
+ layers = 24
324
+
325
+ [convolutional]
326
+ batch_normalize=1
327
+ filters=128
328
+ size=1
329
+ stride=1
330
+ pad=1
331
+ activation=leaky
332
+
333
+ [route]
334
+ layers = -1,-3
335
+
336
+ [convolutional]
337
+ batch_normalize=1
338
+ filters=64
339
+ size=1
340
+ stride=1
341
+ pad=1
342
+ activation=leaky
343
+
344
+ [route]
345
+ layers=-2
346
+
347
+ [convolutional]
348
+ batch_normalize=1
349
+ filters=64
350
+ size=1
351
+ stride=1
352
+ pad=1
353
+ activation=leaky
354
+
355
+ [convolutional]
356
+ batch_normalize=1
357
+ filters=64
358
+ size=3
359
+ stride=1
360
+ pad=1
361
+ activation=leaky
362
+
363
+ [convolutional]
364
+ batch_normalize=1
365
+ filters=64
366
+ size=3
367
+ stride=1
368
+ pad=1
369
+ activation=leaky
370
+
371
+ [route]
372
+ layers = -5,-3,-2,-1
373
+
374
+ # 56
375
+ [convolutional]
376
+ batch_normalize=1
377
+ filters=128
378
+ size=1
379
+ stride=1
380
+ pad=1
381
+ activation=leaky
382
+
383
+ [convolutional]
384
+ batch_normalize=1
385
+ filters=64
386
+ size=1
387
+ stride=1
388
+ pad=1
389
+ activation=leaky
390
+
391
+ [upsample]
392
+ stride=2
393
+
394
+ [route]
395
+ layers = 16
396
+
397
+ [convolutional]
398
+ batch_normalize=1
399
+ filters=64
400
+ size=1
401
+ stride=1
402
+ pad=1
403
+ activation=leaky
404
+
405
+ [route]
406
+ layers = -1,-3
407
+
408
+ [convolutional]
409
+ batch_normalize=1
410
+ filters=32
411
+ size=1
412
+ stride=1
413
+ pad=1
414
+ activation=leaky
415
+
416
+ [route]
417
+ layers=-2
418
+
419
+ [convolutional]
420
+ batch_normalize=1
421
+ filters=32
422
+ size=1
423
+ stride=1
424
+ pad=1
425
+ activation=leaky
426
+
427
+ [convolutional]
428
+ batch_normalize=1
429
+ filters=32
430
+ size=3
431
+ stride=1
432
+ pad=1
433
+ activation=leaky
434
+
435
+ [convolutional]
436
+ batch_normalize=1
437
+ filters=32
438
+ size=3
439
+ stride=1
440
+ pad=1
441
+ activation=leaky
442
+
443
+ [route]
444
+ layers = -5,-3,-2,-1
445
+
446
+ # 68
447
+ [convolutional]
448
+ batch_normalize=1
449
+ filters=64
450
+ size=1
451
+ stride=1
452
+ pad=1
453
+ activation=leaky
454
+
455
+ ##########################
456
+
457
+ [convolutional]
458
+ batch_normalize=1
459
+ size=3
460
+ stride=2
461
+ pad=1
462
+ filters=128
463
+ activation=leaky
464
+
465
+ [route]
466
+ layers = -1,56
467
+
468
+ [convolutional]
469
+ batch_normalize=1
470
+ filters=64
471
+ size=1
472
+ stride=1
473
+ pad=1
474
+ activation=leaky
475
+
476
+ [route]
477
+ layers=-2
478
+
479
+ [convolutional]
480
+ batch_normalize=1
481
+ filters=64
482
+ size=1
483
+ stride=1
484
+ pad=1
485
+ activation=leaky
486
+
487
+ [convolutional]
488
+ batch_normalize=1
489
+ filters=64
490
+ size=3
491
+ stride=1
492
+ pad=1
493
+ activation=leaky
494
+
495
+ [convolutional]
496
+ batch_normalize=1
497
+ filters=64
498
+ size=3
499
+ stride=1
500
+ pad=1
501
+ activation=leaky
502
+
503
+ [route]
504
+ layers = -5,-3,-2,-1
505
+
506
+ # 77
507
+ [convolutional]
508
+ batch_normalize=1
509
+ filters=128
510
+ size=1
511
+ stride=1
512
+ pad=1
513
+ activation=leaky
514
+
515
+ [convolutional]
516
+ batch_normalize=1
517
+ size=3
518
+ stride=2
519
+ pad=1
520
+ filters=256
521
+ activation=leaky
522
+
523
+ [route]
524
+ layers = -1,44
525
+
526
+ [convolutional]
527
+ batch_normalize=1
528
+ filters=128
529
+ size=1
530
+ stride=1
531
+ pad=1
532
+ activation=leaky
533
+
534
+ [route]
535
+ layers=-2
536
+
537
+ [convolutional]
538
+ batch_normalize=1
539
+ filters=128
540
+ size=1
541
+ stride=1
542
+ pad=1
543
+ activation=leaky
544
+
545
+ [convolutional]
546
+ batch_normalize=1
547
+ filters=128
548
+ size=3
549
+ stride=1
550
+ pad=1
551
+ activation=leaky
552
+
553
+ [convolutional]
554
+ batch_normalize=1
555
+ filters=128
556
+ size=3
557
+ stride=1
558
+ pad=1
559
+ activation=leaky
560
+
561
+ [route]
562
+ layers = -5,-3,-2,-1
563
+
564
+ # 86
565
+ [convolutional]
566
+ batch_normalize=1
567
+ filters=256
568
+ size=1
569
+ stride=1
570
+ pad=1
571
+ activation=leaky
572
+
573
+ #############################
574
+
575
+ # ============ End of Neck ============ #
576
+
577
+ # ============ Head ============ #
578
+
579
+
580
+ # P3
581
+ [route]
582
+ layers = 68
583
+
584
+ [convolutional]
585
+ batch_normalize=1
586
+ size=3
587
+ stride=1
588
+ pad=1
589
+ filters=128
590
+ activation=leaky
591
+
592
+ [convolutional]
593
+ size=1
594
+ stride=1
595
+ pad=1
596
+ filters=255
597
+ #activation=linear
598
+ activation=logistic
599
+
600
+ [yolo]
601
+ mask = 0,1,2
602
+ anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
603
+ classes=80
604
+ num=9
605
+ jitter=.1
606
+ scale_x_y = 2.0
607
+ objectness_smooth=1
608
+ ignore_thresh = .7
609
+ truth_thresh = 1
610
+ #random=1
611
+ resize=1.5
612
+ iou_thresh=0.2
613
+ iou_normalizer=0.05
614
+ cls_normalizer=0.5
615
+ obj_normalizer=1.0
616
+ iou_loss=ciou
617
+ nms_kind=diounms
618
+ beta_nms=0.6
619
+ new_coords=1
620
+ max_delta=2
621
+
622
+
623
+ # P4
624
+ [route]
625
+ layers = 77
626
+
627
+ [convolutional]
628
+ batch_normalize=1
629
+ size=3
630
+ stride=1
631
+ pad=1
632
+ filters=256
633
+ activation=leaky
634
+
635
+ [convolutional]
636
+ size=1
637
+ stride=1
638
+ pad=1
639
+ filters=255
640
+ #activation=linear
641
+ activation=logistic
642
+
643
+ [yolo]
644
+ mask = 3,4,5
645
+ anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
646
+ classes=80
647
+ num=9
648
+ jitter=.1
649
+ scale_x_y = 2.0
650
+ objectness_smooth=1
651
+ ignore_thresh = .7
652
+ truth_thresh = 1
653
+ #random=1
654
+ resize=1.5
655
+ iou_thresh=0.2
656
+ iou_normalizer=0.05
657
+ cls_normalizer=0.5
658
+ obj_normalizer=1.0
659
+ iou_loss=ciou
660
+ nms_kind=diounms
661
+ beta_nms=0.6
662
+ new_coords=1
663
+ max_delta=2
664
+
665
+
666
+ # P5
667
+ [route]
668
+ layers = 86
669
+
670
+ [convolutional]
671
+ batch_normalize=1
672
+ size=3
673
+ stride=1
674
+ pad=1
675
+ filters=512
676
+ activation=leaky
677
+
678
+ [convolutional]
679
+ size=1
680
+ stride=1
681
+ pad=1
682
+ filters=255
683
+ #activation=linear
684
+ activation=logistic
685
+
686
+ [yolo]
687
+ mask = 6,7,8
688
+ anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
689
+ classes=80
690
+ num=9
691
+ jitter=.1
692
+ scale_x_y = 2.0
693
+ objectness_smooth=1
694
+ ignore_thresh = .7
695
+ truth_thresh = 1
696
+ #random=1
697
+ resize=1.5
698
+ iou_thresh=0.2
699
+ iou_normalizer=0.05
700
+ cls_normalizer=0.5
701
+ obj_normalizer=1.0
702
+ iou_loss=ciou
703
+ nms_kind=diounms
704
+ beta_nms=0.6
705
+ new_coords=1
706
+ max_delta=2
testspace/models/yolov7/yolov7-tiny.weights ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:06be302b1564f2e2c3e1db1f5ec02477ac05d0ae82405a8c1b2b8e4111101b66
3
+ size 24967560
testspace/models/yolov7/yolov7.cfg ADDED
@@ -0,0 +1,1024 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [net]
2
+ # Testing
3
+ #batch=1
4
+ #subdivisions=1
5
+ # Training
6
+ batch=8
7
+ subdivisions=1
8
+ width=640
9
+ height=640
10
+ channels=3
11
+ momentum=0.9
12
+ decay=0.0005
13
+ angle=0
14
+ saturation = 1.5
15
+ exposure = 1.5
16
+ hue=.1
17
+
18
+ learning_rate=0.00261
19
+ burn_in=1000
20
+
21
+ max_batches = 2000200
22
+ policy=steps
23
+ steps=1600000,1800000
24
+ scales=.1,.1
25
+
26
+ # 0
27
+ [convolutional]
28
+ batch_normalize=1
29
+ filters=32
30
+ size=3
31
+ stride=1
32
+ pad=1
33
+ activation=swish
34
+
35
+
36
+ # 1
37
+ [convolutional]
38
+ batch_normalize=1
39
+ filters=64
40
+ size=3
41
+ stride=2
42
+ pad=1
43
+ activation=swish
44
+
45
+ [convolutional]
46
+ batch_normalize=1
47
+ filters=64
48
+ size=3
49
+ stride=1
50
+ pad=1
51
+ activation=swish
52
+
53
+
54
+ # 3
55
+ [convolutional]
56
+ batch_normalize=1
57
+ filters=128
58
+ size=3
59
+ stride=2
60
+ pad=1
61
+ activation=swish
62
+
63
+ [convolutional]
64
+ batch_normalize=1
65
+ filters=64
66
+ size=1
67
+ stride=1
68
+ pad=1
69
+ activation=swish
70
+
71
+ [route]
72
+ layers=-2
73
+
74
+ [convolutional]
75
+ batch_normalize=1
76
+ filters=64
77
+ size=1
78
+ stride=1
79
+ pad=1
80
+ activation=swish
81
+
82
+ [convolutional]
83
+ batch_normalize=1
84
+ filters=64
85
+ size=3
86
+ stride=1
87
+ pad=1
88
+ activation=swish
89
+
90
+ [convolutional]
91
+ batch_normalize=1
92
+ filters=64
93
+ size=3
94
+ stride=1
95
+ pad=1
96
+ activation=swish
97
+
98
+ [convolutional]
99
+ batch_normalize=1
100
+ filters=64
101
+ size=3
102
+ stride=1
103
+ pad=1
104
+ activation=swish
105
+
106
+ [convolutional]
107
+ batch_normalize=1
108
+ filters=64
109
+ size=3
110
+ stride=1
111
+ pad=1
112
+ activation=swish
113
+
114
+ [route]
115
+ layers = -1,-3,-5,-7
116
+
117
+ # 12
118
+ [convolutional]
119
+ batch_normalize=1
120
+ filters=256
121
+ size=1
122
+ stride=1
123
+ pad=1
124
+ activation=swish
125
+
126
+
127
+ [maxpool]
128
+ size=2
129
+ stride=2
130
+
131
+ [convolutional]
132
+ batch_normalize=1
133
+ filters=128
134
+ size=1
135
+ stride=1
136
+ pad=1
137
+ activation=swish
138
+
139
+ [route]
140
+ layers=-3
141
+
142
+ [convolutional]
143
+ batch_normalize=1
144
+ filters=128
145
+ size=1
146
+ stride=1
147
+ pad=1
148
+ activation=swish
149
+
150
+ [convolutional]
151
+ batch_normalize=1
152
+ filters=128
153
+ size=3
154
+ stride=2
155
+ pad=1
156
+ activation=swish
157
+
158
+ # 18
159
+ [route]
160
+ layers = -1,-4
161
+
162
+ [convolutional]
163
+ batch_normalize=1
164
+ filters=128
165
+ size=1
166
+ stride=1
167
+ pad=1
168
+ activation=swish
169
+
170
+ [route]
171
+ layers=-2
172
+
173
+ [convolutional]
174
+ batch_normalize=1
175
+ filters=128
176
+ size=1
177
+ stride=1
178
+ pad=1
179
+ activation=swish
180
+
181
+ [convolutional]
182
+ batch_normalize=1
183
+ filters=128
184
+ size=3
185
+ stride=1
186
+ pad=1
187
+ activation=swish
188
+
189
+ [convolutional]
190
+ batch_normalize=1
191
+ filters=128
192
+ size=3
193
+ stride=1
194
+ pad=1
195
+ activation=swish
196
+
197
+ [convolutional]
198
+ batch_normalize=1
199
+ filters=128
200
+ size=3
201
+ stride=1
202
+ pad=1
203
+ activation=swish
204
+
205
+ [convolutional]
206
+ batch_normalize=1
207
+ filters=128
208
+ size=3
209
+ stride=1
210
+ pad=1
211
+ activation=swish
212
+
213
+ [route]
214
+ layers = -1,-3,-5,-7
215
+
216
+ # 27
217
+ [convolutional]
218
+ batch_normalize=1
219
+ filters=512
220
+ size=1
221
+ stride=1
222
+ pad=1
223
+ activation=swish
224
+
225
+
226
+ [maxpool]
227
+ size=2
228
+ stride=2
229
+
230
+ [convolutional]
231
+ batch_normalize=1
232
+ filters=256
233
+ size=1
234
+ stride=1
235
+ pad=1
236
+ activation=swish
237
+
238
+ [route]
239
+ layers=-3
240
+
241
+ [convolutional]
242
+ batch_normalize=1
243
+ filters=256
244
+ size=1
245
+ stride=1
246
+ pad=1
247
+ activation=swish
248
+
249
+ [convolutional]
250
+ batch_normalize=1
251
+ filters=256
252
+ size=3
253
+ stride=2
254
+ pad=1
255
+ activation=swish
256
+
257
+ # 33
258
+ [route]
259
+ layers = -1,-4
260
+
261
+ [convolutional]
262
+ batch_normalize=1
263
+ filters=256
264
+ size=1
265
+ stride=1
266
+ pad=1
267
+ activation=swish
268
+
269
+ [route]
270
+ layers=-2
271
+
272
+ [convolutional]
273
+ batch_normalize=1
274
+ filters=256
275
+ size=1
276
+ stride=1
277
+ pad=1
278
+ activation=swish
279
+
280
+ [convolutional]
281
+ batch_normalize=1
282
+ filters=256
283
+ size=3
284
+ stride=1
285
+ pad=1
286
+ activation=swish
287
+
288
+ [convolutional]
289
+ batch_normalize=1
290
+ filters=256
291
+ size=3
292
+ stride=1
293
+ pad=1
294
+ activation=swish
295
+
296
+ [convolutional]
297
+ batch_normalize=1
298
+ filters=256
299
+ size=3
300
+ stride=1
301
+ pad=1
302
+ activation=swish
303
+
304
+ [convolutional]
305
+ batch_normalize=1
306
+ filters=256
307
+ size=3
308
+ stride=1
309
+ pad=1
310
+ activation=swish
311
+
312
+ [route]
313
+ layers = -1,-3,-5,-7
314
+
315
+ # 42
316
+ [convolutional]
317
+ batch_normalize=1
318
+ filters=1024
319
+ size=1
320
+ stride=1
321
+ pad=1
322
+ activation=swish
323
+
324
+
325
+ [maxpool]
326
+ size=2
327
+ stride=2
328
+
329
+ [convolutional]
330
+ batch_normalize=1
331
+ filters=512
332
+ size=1
333
+ stride=1
334
+ pad=1
335
+ activation=swish
336
+
337
+ [route]
338
+ layers=-3
339
+
340
+ [convolutional]
341
+ batch_normalize=1
342
+ filters=512
343
+ size=1
344
+ stride=1
345
+ pad=1
346
+ activation=swish
347
+
348
+ [convolutional]
349
+ batch_normalize=1
350
+ filters=512
351
+ size=3
352
+ stride=2
353
+ pad=1
354
+ activation=swish
355
+
356
+ # 48
357
+ [route]
358
+ layers = -1,-4
359
+
360
+ [convolutional]
361
+ batch_normalize=1
362
+ filters=256
363
+ size=1
364
+ stride=1
365
+ pad=1
366
+ activation=swish
367
+
368
+ [route]
369
+ layers=-2
370
+
371
+ [convolutional]
372
+ batch_normalize=1
373
+ filters=256
374
+ size=1
375
+ stride=1
376
+ pad=1
377
+ activation=swish
378
+
379
+ [convolutional]
380
+ batch_normalize=1
381
+ filters=256
382
+ size=3
383
+ stride=1
384
+ pad=1
385
+ activation=swish
386
+
387
+ [convolutional]
388
+ batch_normalize=1
389
+ filters=256
390
+ size=3
391
+ stride=1
392
+ pad=1
393
+ activation=swish
394
+
395
+ [convolutional]
396
+ batch_normalize=1
397
+ filters=256
398
+ size=3
399
+ stride=1
400
+ pad=1
401
+ activation=swish
402
+
403
+ [convolutional]
404
+ batch_normalize=1
405
+ filters=256
406
+ size=3
407
+ stride=1
408
+ pad=1
409
+ activation=swish
410
+
411
+ [route]
412
+ layers = -1,-3,-5,-7
413
+
414
+ # 57
415
+ [convolutional]
416
+ batch_normalize=1
417
+ filters=1024
418
+ size=1
419
+ stride=1
420
+ pad=1
421
+ activation=swish
422
+
423
+ ##################################
424
+
425
+ ### SPPCSP ###
426
+ [convolutional]
427
+ batch_normalize=1
428
+ filters=512
429
+ size=1
430
+ stride=1
431
+ pad=1
432
+ activation=swish
433
+
434
+ [route]
435
+ layers = -2
436
+
437
+ [convolutional]
438
+ batch_normalize=1
439
+ filters=512
440
+ size=1
441
+ stride=1
442
+ pad=1
443
+ activation=swish
444
+
445
+ [convolutional]
446
+ batch_normalize=1
447
+ size=3
448
+ stride=1
449
+ pad=1
450
+ filters=512
451
+ activation=swish
452
+
453
+ [convolutional]
454
+ batch_normalize=1
455
+ filters=512
456
+ size=1
457
+ stride=1
458
+ pad=1
459
+ activation=swish
460
+
461
+ ### SPP ###
462
+ [maxpool]
463
+ stride=1
464
+ size=5
465
+
466
+ [route]
467
+ layers=-2
468
+
469
+ [maxpool]
470
+ stride=1
471
+ size=9
472
+
473
+ [route]
474
+ layers=-4
475
+
476
+ [maxpool]
477
+ stride=1
478
+ size=13
479
+
480
+ [route]
481
+ layers=-6,-5,-3,-1
482
+ ### End SPP ###
483
+
484
+ [convolutional]
485
+ batch_normalize=1
486
+ filters=512
487
+ size=1
488
+ stride=1
489
+ pad=1
490
+ activation=swish
491
+
492
+ [convolutional]
493
+ batch_normalize=1
494
+ size=3
495
+ stride=1
496
+ pad=1
497
+ filters=512
498
+ activation=swish
499
+
500
+ [route]
501
+ layers = -1, -13
502
+
503
+ # 72
504
+ [convolutional]
505
+ batch_normalize=1
506
+ filters=512
507
+ size=1
508
+ stride=1
509
+ pad=1
510
+ activation=swish
511
+ ### End SPPCSP ###
512
+
513
+
514
+ [convolutional]
515
+ batch_normalize=1
516
+ filters=256
517
+ size=1
518
+ stride=1
519
+ pad=1
520
+ activation=swish
521
+
522
+ [upsample]
523
+ stride=2
524
+
525
+ [route]
526
+ layers = 42
527
+
528
+ [convolutional]
529
+ batch_normalize=1
530
+ filters=256
531
+ size=1
532
+ stride=1
533
+ pad=1
534
+ activation=swish
535
+
536
+ [route]
537
+ layers = -1,-3
538
+
539
+
540
+ [convolutional]
541
+ batch_normalize=1
542
+ filters=256
543
+ size=1
544
+ stride=1
545
+ pad=1
546
+ activation=swish
547
+
548
+ [route]
549
+ layers=-2
550
+
551
+ [convolutional]
552
+ batch_normalize=1
553
+ filters=256
554
+ size=1
555
+ stride=1
556
+ pad=1
557
+ activation=swish
558
+
559
+ [convolutional]
560
+ batch_normalize=1
561
+ filters=128
562
+ size=3
563
+ stride=1
564
+ pad=1
565
+ activation=swish
566
+
567
+ [convolutional]
568
+ batch_normalize=1
569
+ filters=128
570
+ size=3
571
+ stride=1
572
+ pad=1
573
+ activation=swish
574
+
575
+ [convolutional]
576
+ batch_normalize=1
577
+ filters=128
578
+ size=3
579
+ stride=1
580
+ pad=1
581
+ activation=swish
582
+
583
+ [convolutional]
584
+ batch_normalize=1
585
+ filters=128
586
+ size=3
587
+ stride=1
588
+ pad=1
589
+ activation=swish
590
+
591
+ [route]
592
+ layers = -1,-2,-3,-4,-5,-7
593
+
594
+ # 86
595
+ [convolutional]
596
+ batch_normalize=1
597
+ filters=256
598
+ size=1
599
+ stride=1
600
+ pad=1
601
+ activation=swish
602
+
603
+
604
+ [convolutional]
605
+ batch_normalize=1
606
+ filters=128
607
+ size=1
608
+ stride=1
609
+ pad=1
610
+ activation=swish
611
+
612
+ [upsample]
613
+ stride=2
614
+
615
+ [route]
616
+ layers = 27
617
+
618
+ [convolutional]
619
+ batch_normalize=1
620
+ filters=128
621
+ size=1
622
+ stride=1
623
+ pad=1
624
+ activation=swish
625
+
626
+ [route]
627
+ layers = -1,-3
628
+
629
+
630
+ [convolutional]
631
+ batch_normalize=1
632
+ filters=128
633
+ size=1
634
+ stride=1
635
+ pad=1
636
+ activation=swish
637
+
638
+ [route]
639
+ layers=-2
640
+
641
+ [convolutional]
642
+ batch_normalize=1
643
+ filters=128
644
+ size=1
645
+ stride=1
646
+ pad=1
647
+ activation=swish
648
+
649
+ [convolutional]
650
+ batch_normalize=1
651
+ filters=64
652
+ size=3
653
+ stride=1
654
+ pad=1
655
+ activation=swish
656
+
657
+ [convolutional]
658
+ batch_normalize=1
659
+ filters=64
660
+ size=3
661
+ stride=1
662
+ pad=1
663
+ activation=swish
664
+
665
+ [convolutional]
666
+ batch_normalize=1
667
+ filters=64
668
+ size=3
669
+ stride=1
670
+ pad=1
671
+ activation=swish
672
+
673
+ [convolutional]
674
+ batch_normalize=1
675
+ filters=64
676
+ size=3
677
+ stride=1
678
+ pad=1
679
+ activation=swish
680
+
681
+ [route]
682
+ layers = -1,-2,-3,-4,-5,-7
683
+
684
+ # 100
685
+ [convolutional]
686
+ batch_normalize=1
687
+ filters=128
688
+ size=1
689
+ stride=1
690
+ pad=1
691
+ activation=swish
692
+
693
+
694
+ [maxpool]
695
+ size=2
696
+ stride=2
697
+
698
+ [convolutional]
699
+ batch_normalize=1
700
+ filters=128
701
+ size=1
702
+ stride=1
703
+ pad=1
704
+ activation=swish
705
+
706
+ [route]
707
+ layers=-3
708
+
709
+ [convolutional]
710
+ batch_normalize=1
711
+ filters=128
712
+ size=1
713
+ stride=1
714
+ pad=1
715
+ activation=swish
716
+
717
+ [convolutional]
718
+ batch_normalize=1
719
+ filters=128
720
+ size=3
721
+ stride=2
722
+ pad=1
723
+ activation=swish
724
+
725
+ [route]
726
+ layers = -1,-4,86
727
+
728
+
729
+ [convolutional]
730
+ batch_normalize=1
731
+ filters=256
732
+ size=1
733
+ stride=1
734
+ pad=1
735
+ activation=swish
736
+
737
+ [route]
738
+ layers=-2
739
+
740
+ [convolutional]
741
+ batch_normalize=1
742
+ filters=256
743
+ size=1
744
+ stride=1
745
+ pad=1
746
+ activation=swish
747
+
748
+ [convolutional]
749
+ batch_normalize=1
750
+ filters=128
751
+ size=3
752
+ stride=1
753
+ pad=1
754
+ activation=swish
755
+
756
+ [convolutional]
757
+ batch_normalize=1
758
+ filters=128
759
+ size=3
760
+ stride=1
761
+ pad=1
762
+ activation=swish
763
+
764
+ [convolutional]
765
+ batch_normalize=1
766
+ filters=128
767
+ size=3
768
+ stride=1
769
+ pad=1
770
+ activation=swish
771
+
772
+ [convolutional]
773
+ batch_normalize=1
774
+ filters=128
775
+ size=3
776
+ stride=1
777
+ pad=1
778
+ activation=swish
779
+
780
+ [route]
781
+ layers = -1,-2,-3,-4,-5,-7
782
+
783
+ # 115
784
+ [convolutional]
785
+ batch_normalize=1
786
+ filters=256
787
+ size=1
788
+ stride=1
789
+ pad=1
790
+ activation=swish
791
+
792
+
793
+ [maxpool]
794
+ size=2
795
+ stride=2
796
+
797
+ [convolutional]
798
+ batch_normalize=1
799
+ filters=256
800
+ size=1
801
+ stride=1
802
+ pad=1
803
+ activation=swish
804
+
805
+ [route]
806
+ layers=-3
807
+
808
+ [convolutional]
809
+ batch_normalize=1
810
+ filters=256
811
+ size=1
812
+ stride=1
813
+ pad=1
814
+ activation=swish
815
+
816
+ [convolutional]
817
+ batch_normalize=1
818
+ filters=256
819
+ size=3
820
+ stride=2
821
+ pad=1
822
+ activation=swish
823
+
824
+ [route]
825
+ layers = -1,-4,72
826
+
827
+
828
+ [convolutional]
829
+ batch_normalize=1
830
+ filters=512
831
+ size=1
832
+ stride=1
833
+ pad=1
834
+ activation=swish
835
+
836
+ [route]
837
+ layers=-2
838
+
839
+ [convolutional]
840
+ batch_normalize=1
841
+ filters=512
842
+ size=1
843
+ stride=1
844
+ pad=1
845
+ activation=swish
846
+
847
+ [convolutional]
848
+ batch_normalize=1
849
+ filters=256
850
+ size=3
851
+ stride=1
852
+ pad=1
853
+ activation=swish
854
+
855
+ [convolutional]
856
+ batch_normalize=1
857
+ filters=256
858
+ size=3
859
+ stride=1
860
+ pad=1
861
+ activation=swish
862
+
863
+ [convolutional]
864
+ batch_normalize=1
865
+ filters=256
866
+ size=3
867
+ stride=1
868
+ pad=1
869
+ activation=swish
870
+
871
+ [convolutional]
872
+ batch_normalize=1
873
+ filters=256
874
+ size=3
875
+ stride=1
876
+ pad=1
877
+ activation=swish
878
+
879
+ [route]
880
+ layers = -1,-2,-3,-4,-5,-7
881
+
882
+ # 130
883
+ [convolutional]
884
+ batch_normalize=1
885
+ filters=512
886
+ size=1
887
+ stride=1
888
+ pad=1
889
+ activation=swish
890
+
891
+ #############################
892
+
893
+ # ============ End of Neck ============ #
894
+
895
+ # ============ Head ============ #
896
+
897
+
898
+ # P3
899
+ [route]
900
+ layers = 100
901
+
902
+ [convolutional]
903
+ batch_normalize=1
904
+ size=3
905
+ stride=1
906
+ pad=1
907
+ filters=256
908
+ activation=swish
909
+
910
+ [convolutional]
911
+ size=1
912
+ stride=1
913
+ pad=1
914
+ filters=255
915
+ #activation=linear
916
+ activation=logistic
917
+
918
+ [yolo]
919
+ mask = 0,1,2
920
+ anchors = 12,16, 19,36, 40,28, 36,75, 76,55, 72,146, 142,110, 192,243, 459,401
921
+ classes=80
922
+ num=9
923
+ jitter=.1
924
+ scale_x_y = 2.0
925
+ objectness_smooth=1
926
+ ignore_thresh = .7
927
+ truth_thresh = 1
928
+ #random=1
929
+ resize=1.5
930
+ iou_thresh=0.2
931
+ iou_normalizer=0.05
932
+ cls_normalizer=0.5
933
+ obj_normalizer=1.0
934
+ iou_loss=ciou
935
+ nms_kind=diounms
936
+ beta_nms=0.6
937
+ new_coords=1
938
+ max_delta=2
939
+
940
+
941
+ # P4
942
+ [route]
943
+ layers = 115
944
+
945
+ [convolutional]
946
+ batch_normalize=1
947
+ size=3
948
+ stride=1
949
+ pad=1
950
+ filters=512
951
+ activation=swish
952
+
953
+ [convolutional]
954
+ size=1
955
+ stride=1
956
+ pad=1
957
+ filters=255
958
+ #activation=linear
959
+ activation=logistic
960
+
961
+ [yolo]
962
+ mask = 3,4,5
963
+ anchors = 12,16, 19,36, 40,28, 36,75, 76,55, 72,146, 142,110, 192,243, 459,401
964
+ classes=80
965
+ num=9
966
+ jitter=.1
967
+ scale_x_y = 2.0
968
+ objectness_smooth=1
969
+ ignore_thresh = .7
970
+ truth_thresh = 1
971
+ #random=1
972
+ resize=1.5
973
+ iou_thresh=0.2
974
+ iou_normalizer=0.05
975
+ cls_normalizer=0.5
976
+ obj_normalizer=1.0
977
+ iou_loss=ciou
978
+ nms_kind=diounms
979
+ beta_nms=0.6
980
+ new_coords=1
981
+ max_delta=2
982
+
983
+
984
+ # P5
985
+ [route]
986
+ layers = 130
987
+
988
+ [convolutional]
989
+ batch_normalize=1
990
+ size=3
991
+ stride=1
992
+ pad=1
993
+ filters=1024
994
+ activation=swish
995
+
996
+ [convolutional]
997
+ size=1
998
+ stride=1
999
+ pad=1
1000
+ filters=255
1001
+ #activation=linear
1002
+ activation=logistic
1003
+
1004
+ [yolo]
1005
+ mask = 6,7,8
1006
+ anchors = 12,16, 19,36, 40,28, 36,75, 76,55, 72,146, 142,110, 192,243, 459,401
1007
+ classes=80
1008
+ num=9
1009
+ jitter=.1
1010
+ scale_x_y = 2.0
1011
+ objectness_smooth=1
1012
+ ignore_thresh = .7
1013
+ truth_thresh = 1
1014
+ #random=1
1015
+ resize=1.5
1016
+ iou_thresh=0.2
1017
+ iou_normalizer=0.05
1018
+ cls_normalizer=0.5
1019
+ obj_normalizer=1.0
1020
+ iou_loss=ciou
1021
+ nms_kind=diounms
1022
+ beta_nms=0.6
1023
+ new_coords=1
1024
+ max_delta=2
testspace/models/yolov7/yolov7.weights ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4ecf7ca13ec5039ec7b79b0f25b156fda5eaf819d6c2bb6828ba55fe4f928332
3
+ size 147898248
testspace/models/yolov7/yolov7x.cfg ADDED
@@ -0,0 +1,1152 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [net]
2
+ # Testing
3
+ #batch=1
4
+ #subdivisions=1
5
+ # Training
6
+ batch=8
7
+ subdivisions=1
8
+ width=640
9
+ height=640
10
+ channels=3
11
+ momentum=0.9
12
+ decay=0.0005
13
+ angle=0
14
+ saturation = 1.5
15
+ exposure = 1.5
16
+ hue=.1
17
+
18
+ learning_rate=0.00261
19
+ burn_in=1000
20
+
21
+ max_batches = 2000200
22
+ policy=steps
23
+ steps=1600000,1800000
24
+ scales=.1,.1
25
+
26
+
27
+ # 0
28
+ [convolutional]
29
+ batch_normalize=1
30
+ filters=40
31
+ size=3
32
+ stride=1
33
+ pad=1
34
+ activation=swish
35
+
36
+
37
+ # 1
38
+ [convolutional]
39
+ batch_normalize=1
40
+ filters=80
41
+ size=3
42
+ stride=2
43
+ pad=1
44
+ activation=swish
45
+
46
+ [convolutional]
47
+ batch_normalize=1
48
+ filters=80
49
+ size=3
50
+ stride=1
51
+ pad=1
52
+ activation=swish
53
+
54
+
55
+ # 3
56
+ [convolutional]
57
+ batch_normalize=1
58
+ filters=160
59
+ size=3
60
+ stride=2
61
+ pad=1
62
+ activation=swish
63
+
64
+ [convolutional]
65
+ batch_normalize=1
66
+ filters=64
67
+ size=1
68
+ stride=1
69
+ pad=1
70
+ activation=swish
71
+
72
+ [route]
73
+ layers=-2
74
+
75
+ [convolutional]
76
+ batch_normalize=1
77
+ filters=64
78
+ size=1
79
+ stride=1
80
+ pad=1
81
+ activation=swish
82
+
83
+ [convolutional]
84
+ batch_normalize=1
85
+ filters=64
86
+ size=3
87
+ stride=1
88
+ pad=1
89
+ activation=swish
90
+
91
+ [convolutional]
92
+ batch_normalize=1
93
+ filters=64
94
+ size=3
95
+ stride=1
96
+ pad=1
97
+ activation=swish
98
+
99
+ [convolutional]
100
+ batch_normalize=1
101
+ filters=64
102
+ size=3
103
+ stride=1
104
+ pad=1
105
+ activation=swish
106
+
107
+ [convolutional]
108
+ batch_normalize=1
109
+ filters=64
110
+ size=3
111
+ stride=1
112
+ pad=1
113
+ activation=swish
114
+
115
+ [convolutional]
116
+ batch_normalize=1
117
+ filters=64
118
+ size=3
119
+ stride=1
120
+ pad=1
121
+ activation=swish
122
+
123
+ [convolutional]
124
+ batch_normalize=1
125
+ filters=64
126
+ size=3
127
+ stride=1
128
+ pad=1
129
+ activation=swish
130
+
131
+ [route]
132
+ layers = -1,-3,-5,-7,-9
133
+
134
+ # 14
135
+ [convolutional]
136
+ batch_normalize=1
137
+ filters=320
138
+ size=1
139
+ stride=1
140
+ pad=1
141
+ activation=swish
142
+
143
+
144
+ [maxpool]
145
+ size=2
146
+ stride=2
147
+
148
+ [convolutional]
149
+ batch_normalize=1
150
+ filters=160
151
+ size=1
152
+ stride=1
153
+ pad=1
154
+ activation=swish
155
+
156
+ [route]
157
+ layers=-3
158
+
159
+ [convolutional]
160
+ batch_normalize=1
161
+ filters=160
162
+ size=1
163
+ stride=1
164
+ pad=1
165
+ activation=swish
166
+
167
+ [convolutional]
168
+ batch_normalize=1
169
+ filters=160
170
+ size=3
171
+ stride=2
172
+ pad=1
173
+ activation=swish
174
+
175
+ # 20
176
+ [route]
177
+ layers = -1,-4
178
+
179
+ [convolutional]
180
+ batch_normalize=1
181
+ filters=128
182
+ size=1
183
+ stride=1
184
+ pad=1
185
+ activation=swish
186
+
187
+ [route]
188
+ layers=-2
189
+
190
+ [convolutional]
191
+ batch_normalize=1
192
+ filters=128
193
+ size=1
194
+ stride=1
195
+ pad=1
196
+ activation=swish
197
+
198
+ [convolutional]
199
+ batch_normalize=1
200
+ filters=128
201
+ size=3
202
+ stride=1
203
+ pad=1
204
+ activation=swish
205
+
206
+ [convolutional]
207
+ batch_normalize=1
208
+ filters=128
209
+ size=3
210
+ stride=1
211
+ pad=1
212
+ activation=swish
213
+
214
+ [convolutional]
215
+ batch_normalize=1
216
+ filters=128
217
+ size=3
218
+ stride=1
219
+ pad=1
220
+ activation=swish
221
+
222
+ [convolutional]
223
+ batch_normalize=1
224
+ filters=128
225
+ size=3
226
+ stride=1
227
+ pad=1
228
+ activation=swish
229
+
230
+ [convolutional]
231
+ batch_normalize=1
232
+ filters=128
233
+ size=3
234
+ stride=1
235
+ pad=1
236
+ activation=swish
237
+
238
+ [convolutional]
239
+ batch_normalize=1
240
+ filters=128
241
+ size=3
242
+ stride=1
243
+ pad=1
244
+ activation=swish
245
+
246
+ [route]
247
+ layers = -1,-3,-5,-7,-9
248
+
249
+ # 31
250
+ [convolutional]
251
+ batch_normalize=1
252
+ filters=640
253
+ size=1
254
+ stride=1
255
+ pad=1
256
+ activation=swish
257
+
258
+
259
+ [maxpool]
260
+ size=2
261
+ stride=2
262
+
263
+ [convolutional]
264
+ batch_normalize=1
265
+ filters=320
266
+ size=1
267
+ stride=1
268
+ pad=1
269
+ activation=swish
270
+
271
+ [route]
272
+ layers=-3
273
+
274
+ [convolutional]
275
+ batch_normalize=1
276
+ filters=320
277
+ size=1
278
+ stride=1
279
+ pad=1
280
+ activation=swish
281
+
282
+ [convolutional]
283
+ batch_normalize=1
284
+ filters=320
285
+ size=3
286
+ stride=2
287
+ pad=1
288
+ activation=swish
289
+
290
+ # 37
291
+ [route]
292
+ layers = -1,-4
293
+
294
+ [convolutional]
295
+ batch_normalize=1
296
+ filters=256
297
+ size=1
298
+ stride=1
299
+ pad=1
300
+ activation=swish
301
+
302
+ [route]
303
+ layers=-2
304
+
305
+ [convolutional]
306
+ batch_normalize=1
307
+ filters=256
308
+ size=1
309
+ stride=1
310
+ pad=1
311
+ activation=swish
312
+
313
+ [convolutional]
314
+ batch_normalize=1
315
+ filters=256
316
+ size=3
317
+ stride=1
318
+ pad=1
319
+ activation=swish
320
+
321
+ [convolutional]
322
+ batch_normalize=1
323
+ filters=256
324
+ size=3
325
+ stride=1
326
+ pad=1
327
+ activation=swish
328
+
329
+ [convolutional]
330
+ batch_normalize=1
331
+ filters=256
332
+ size=3
333
+ stride=1
334
+ pad=1
335
+ activation=swish
336
+
337
+ [convolutional]
338
+ batch_normalize=1
339
+ filters=256
340
+ size=3
341
+ stride=1
342
+ pad=1
343
+ activation=swish
344
+
345
+ [convolutional]
346
+ batch_normalize=1
347
+ filters=256
348
+ size=3
349
+ stride=1
350
+ pad=1
351
+ activation=swish
352
+
353
+ [convolutional]
354
+ batch_normalize=1
355
+ filters=256
356
+ size=3
357
+ stride=1
358
+ pad=1
359
+ activation=swish
360
+
361
+ [route]
362
+ layers = -1,-3,-5,-7,-9
363
+
364
+ # 48
365
+ [convolutional]
366
+ batch_normalize=1
367
+ filters=1280
368
+ size=1
369
+ stride=1
370
+ pad=1
371
+ activation=swish
372
+
373
+
374
+ [maxpool]
375
+ size=2
376
+ stride=2
377
+
378
+ [convolutional]
379
+ batch_normalize=1
380
+ filters=640
381
+ size=1
382
+ stride=1
383
+ pad=1
384
+ activation=swish
385
+
386
+ [route]
387
+ layers=-3
388
+
389
+ [convolutional]
390
+ batch_normalize=1
391
+ filters=640
392
+ size=1
393
+ stride=1
394
+ pad=1
395
+ activation=swish
396
+
397
+ [convolutional]
398
+ batch_normalize=1
399
+ filters=640
400
+ size=3
401
+ stride=2
402
+ pad=1
403
+ activation=swish
404
+
405
+ # 54
406
+ [route]
407
+ layers = -1,-4
408
+
409
+ [convolutional]
410
+ batch_normalize=1
411
+ filters=256
412
+ size=1
413
+ stride=1
414
+ pad=1
415
+ activation=swish
416
+
417
+ [route]
418
+ layers=-2
419
+
420
+ [convolutional]
421
+ batch_normalize=1
422
+ filters=256
423
+ size=1
424
+ stride=1
425
+ pad=1
426
+ activation=swish
427
+
428
+ [convolutional]
429
+ batch_normalize=1
430
+ filters=256
431
+ size=3
432
+ stride=1
433
+ pad=1
434
+ activation=swish
435
+
436
+ [convolutional]
437
+ batch_normalize=1
438
+ filters=256
439
+ size=3
440
+ stride=1
441
+ pad=1
442
+ activation=swish
443
+
444
+ [convolutional]
445
+ batch_normalize=1
446
+ filters=256
447
+ size=3
448
+ stride=1
449
+ pad=1
450
+ activation=swish
451
+
452
+ [convolutional]
453
+ batch_normalize=1
454
+ filters=256
455
+ size=3
456
+ stride=1
457
+ pad=1
458
+ activation=swish
459
+
460
+ [convolutional]
461
+ batch_normalize=1
462
+ filters=256
463
+ size=3
464
+ stride=1
465
+ pad=1
466
+ activation=swish
467
+
468
+ [convolutional]
469
+ batch_normalize=1
470
+ filters=256
471
+ size=3
472
+ stride=1
473
+ pad=1
474
+ activation=swish
475
+
476
+ [route]
477
+ layers = -1,-3,-5,-7,-9
478
+
479
+ # 65
480
+ [convolutional]
481
+ batch_normalize=1
482
+ filters=1280
483
+ size=1
484
+ stride=1
485
+ pad=1
486
+ activation=swish
487
+
488
+ ##################################
489
+
490
+ ### SPPCSP ###
491
+ [convolutional]
492
+ batch_normalize=1
493
+ filters=640
494
+ size=1
495
+ stride=1
496
+ pad=1
497
+ activation=swish
498
+
499
+ [route]
500
+ layers = -2
501
+
502
+ [convolutional]
503
+ batch_normalize=1
504
+ filters=640
505
+ size=1
506
+ stride=1
507
+ pad=1
508
+ activation=swish
509
+
510
+ [convolutional]
511
+ batch_normalize=1
512
+ size=3
513
+ stride=1
514
+ pad=1
515
+ filters=640
516
+ activation=swish
517
+
518
+ [convolutional]
519
+ batch_normalize=1
520
+ filters=640
521
+ size=1
522
+ stride=1
523
+ pad=1
524
+ activation=swish
525
+
526
+ ### SPP ###
527
+ [maxpool]
528
+ stride=1
529
+ size=5
530
+
531
+ [route]
532
+ layers=-2
533
+
534
+ [maxpool]
535
+ stride=1
536
+ size=9
537
+
538
+ [route]
539
+ layers=-4
540
+
541
+ [maxpool]
542
+ stride=1
543
+ size=13
544
+
545
+ [route]
546
+ layers=-6,-5,-3,-1
547
+ ### End SPP ###
548
+
549
+ [convolutional]
550
+ batch_normalize=1
551
+ filters=640
552
+ size=1
553
+ stride=1
554
+ pad=1
555
+ activation=swish
556
+
557
+ [convolutional]
558
+ batch_normalize=1
559
+ size=3
560
+ stride=1
561
+ pad=1
562
+ filters=640
563
+ activation=swish
564
+
565
+ [route]
566
+ layers = -1, -13
567
+
568
+ # 80
569
+ [convolutional]
570
+ batch_normalize=1
571
+ filters=640
572
+ size=1
573
+ stride=1
574
+ pad=1
575
+ activation=swish
576
+
577
+
578
+ [convolutional]
579
+ batch_normalize=1
580
+ filters=320
581
+ size=1
582
+ stride=1
583
+ pad=1
584
+ activation=swish
585
+
586
+ [upsample]
587
+ stride=2
588
+
589
+ [route]
590
+ layers = 48
591
+
592
+ [convolutional]
593
+ batch_normalize=1
594
+ filters=320
595
+ size=1
596
+ stride=1
597
+ pad=1
598
+ activation=swish
599
+
600
+ [route]
601
+ layers = -1,-3
602
+
603
+
604
+ [convolutional]
605
+ batch_normalize=1
606
+ filters=256
607
+ size=1
608
+ stride=1
609
+ pad=1
610
+ activation=swish
611
+
612
+ [route]
613
+ layers=-2
614
+
615
+ [convolutional]
616
+ batch_normalize=1
617
+ filters=256
618
+ size=1
619
+ stride=1
620
+ pad=1
621
+ activation=swish
622
+
623
+ [convolutional]
624
+ batch_normalize=1
625
+ filters=256
626
+ size=3
627
+ stride=1
628
+ pad=1
629
+ activation=swish
630
+
631
+ [convolutional]
632
+ batch_normalize=1
633
+ filters=256
634
+ size=3
635
+ stride=1
636
+ pad=1
637
+ activation=swish
638
+
639
+ [convolutional]
640
+ batch_normalize=1
641
+ filters=256
642
+ size=3
643
+ stride=1
644
+ pad=1
645
+ activation=swish
646
+
647
+ [convolutional]
648
+ batch_normalize=1
649
+ filters=256
650
+ size=3
651
+ stride=1
652
+ pad=1
653
+ activation=swish
654
+
655
+ [convolutional]
656
+ batch_normalize=1
657
+ filters=256
658
+ size=3
659
+ stride=1
660
+ pad=1
661
+ activation=swish
662
+
663
+ [convolutional]
664
+ batch_normalize=1
665
+ filters=256
666
+ size=3
667
+ stride=1
668
+ pad=1
669
+ activation=swish
670
+
671
+ [route]
672
+ layers = -1,-3,-5,-7,-9
673
+
674
+ # 96
675
+ [convolutional]
676
+ batch_normalize=1
677
+ filters=320
678
+ size=1
679
+ stride=1
680
+ pad=1
681
+ activation=swish
682
+
683
+
684
+ [convolutional]
685
+ batch_normalize=1
686
+ filters=160
687
+ size=1
688
+ stride=1
689
+ pad=1
690
+ activation=swish
691
+
692
+ [upsample]
693
+ stride=2
694
+
695
+ [route]
696
+ layers = 31
697
+
698
+ [convolutional]
699
+ batch_normalize=1
700
+ filters=160
701
+ size=1
702
+ stride=1
703
+ pad=1
704
+ activation=swish
705
+
706
+ [route]
707
+ layers = -1,-3
708
+
709
+
710
+ [convolutional]
711
+ batch_normalize=1
712
+ filters=128
713
+ size=1
714
+ stride=1
715
+ pad=1
716
+ activation=swish
717
+
718
+ [route]
719
+ layers=-2
720
+
721
+ [convolutional]
722
+ batch_normalize=1
723
+ filters=128
724
+ size=1
725
+ stride=1
726
+ pad=1
727
+ activation=swish
728
+
729
+ [convolutional]
730
+ batch_normalize=1
731
+ filters=128
732
+ size=3
733
+ stride=1
734
+ pad=1
735
+ activation=swish
736
+
737
+ [convolutional]
738
+ batch_normalize=1
739
+ filters=128
740
+ size=3
741
+ stride=1
742
+ pad=1
743
+ activation=swish
744
+
745
+ [convolutional]
746
+ batch_normalize=1
747
+ filters=128
748
+ size=3
749
+ stride=1
750
+ pad=1
751
+ activation=swish
752
+
753
+ [convolutional]
754
+ batch_normalize=1
755
+ filters=128
756
+ size=3
757
+ stride=1
758
+ pad=1
759
+ activation=swish
760
+
761
+ [convolutional]
762
+ batch_normalize=1
763
+ filters=128
764
+ size=3
765
+ stride=1
766
+ pad=1
767
+ activation=swish
768
+
769
+ [convolutional]
770
+ batch_normalize=1
771
+ filters=128
772
+ size=3
773
+ stride=1
774
+ pad=1
775
+ activation=swish
776
+
777
+ [route]
778
+ layers = -1,-3,-5,-7,-9
779
+
780
+ # 112
781
+ [convolutional]
782
+ batch_normalize=1
783
+ filters=160
784
+ size=1
785
+ stride=1
786
+ pad=1
787
+ activation=swish
788
+
789
+
790
+ [maxpool]
791
+ size=2
792
+ stride=2
793
+
794
+ [convolutional]
795
+ batch_normalize=1
796
+ filters=160
797
+ size=1
798
+ stride=1
799
+ pad=1
800
+ activation=swish
801
+
802
+ [route]
803
+ layers=-3
804
+
805
+ [convolutional]
806
+ batch_normalize=1
807
+ filters=160
808
+ size=1
809
+ stride=1
810
+ pad=1
811
+ activation=swish
812
+
813
+ [convolutional]
814
+ batch_normalize=1
815
+ filters=160
816
+ size=3
817
+ stride=2
818
+ pad=1
819
+ activation=swish
820
+
821
+ [route]
822
+ layers = -1,-4,96
823
+
824
+
825
+ [convolutional]
826
+ batch_normalize=1
827
+ filters=256
828
+ size=1
829
+ stride=1
830
+ pad=1
831
+ activation=swish
832
+
833
+ [route]
834
+ layers=-2
835
+
836
+ [convolutional]
837
+ batch_normalize=1
838
+ filters=256
839
+ size=1
840
+ stride=1
841
+ pad=1
842
+ activation=swish
843
+
844
+ [convolutional]
845
+ batch_normalize=1
846
+ filters=256
847
+ size=3
848
+ stride=1
849
+ pad=1
850
+ activation=swish
851
+
852
+ [convolutional]
853
+ batch_normalize=1
854
+ filters=256
855
+ size=3
856
+ stride=1
857
+ pad=1
858
+ activation=swish
859
+
860
+ [convolutional]
861
+ batch_normalize=1
862
+ filters=256
863
+ size=3
864
+ stride=1
865
+ pad=1
866
+ activation=swish
867
+
868
+ [convolutional]
869
+ batch_normalize=1
870
+ filters=256
871
+ size=3
872
+ stride=1
873
+ pad=1
874
+ activation=swish
875
+
876
+ [convolutional]
877
+ batch_normalize=1
878
+ filters=256
879
+ size=3
880
+ stride=1
881
+ pad=1
882
+ activation=swish
883
+
884
+ [convolutional]
885
+ batch_normalize=1
886
+ filters=256
887
+ size=3
888
+ stride=1
889
+ pad=1
890
+ activation=swish
891
+
892
+ [route]
893
+ layers = -1,-3,-5,-7,-9
894
+
895
+ # 129
896
+ [convolutional]
897
+ batch_normalize=1
898
+ filters=320
899
+ size=1
900
+ stride=1
901
+ pad=1
902
+ activation=swish
903
+
904
+
905
+ [maxpool]
906
+ size=2
907
+ stride=2
908
+
909
+ [convolutional]
910
+ batch_normalize=1
911
+ filters=320
912
+ size=1
913
+ stride=1
914
+ pad=1
915
+ activation=swish
916
+
917
+ [route]
918
+ layers=-3
919
+
920
+ [convolutional]
921
+ batch_normalize=1
922
+ filters=320
923
+ size=1
924
+ stride=1
925
+ pad=1
926
+ activation=swish
927
+
928
+ [convolutional]
929
+ batch_normalize=1
930
+ filters=320
931
+ size=3
932
+ stride=2
933
+ pad=1
934
+ activation=swish
935
+
936
+ [route]
937
+ layers = -1,-4,80
938
+
939
+
940
+ [convolutional]
941
+ batch_normalize=1
942
+ filters=512
943
+ size=1
944
+ stride=1
945
+ pad=1
946
+ activation=swish
947
+
948
+ [route]
949
+ layers=-2
950
+
951
+ [convolutional]
952
+ batch_normalize=1
953
+ filters=512
954
+ size=1
955
+ stride=1
956
+ pad=1
957
+ activation=swish
958
+
959
+ [convolutional]
960
+ batch_normalize=1
961
+ filters=512
962
+ size=3
963
+ stride=1
964
+ pad=1
965
+ activation=swish
966
+
967
+ [convolutional]
968
+ batch_normalize=1
969
+ filters=512
970
+ size=3
971
+ stride=1
972
+ pad=1
973
+ activation=swish
974
+
975
+ [convolutional]
976
+ batch_normalize=1
977
+ filters=512
978
+ size=3
979
+ stride=1
980
+ pad=1
981
+ activation=swish
982
+
983
+ [convolutional]
984
+ batch_normalize=1
985
+ filters=512
986
+ size=3
987
+ stride=1
988
+ pad=1
989
+ activation=swish
990
+
991
+ [convolutional]
992
+ batch_normalize=1
993
+ filters=512
994
+ size=3
995
+ stride=1
996
+ pad=1
997
+ activation=swish
998
+
999
+ [convolutional]
1000
+ batch_normalize=1
1001
+ filters=512
1002
+ size=3
1003
+ stride=1
1004
+ pad=1
1005
+ activation=swish
1006
+
1007
+ [route]
1008
+ layers = -1,-3,-5,-7,-9
1009
+
1010
+ # 146
1011
+ [convolutional]
1012
+ batch_normalize=1
1013
+ filters=640
1014
+ size=1
1015
+ stride=1
1016
+ pad=1
1017
+ activation=swish
1018
+
1019
+ #############################
1020
+
1021
+ # ============ End of Neck ============ #
1022
+
1023
+ # ============ Head ============ #
1024
+
1025
+
1026
+ # P3
1027
+ [route]
1028
+ layers = 112
1029
+
1030
+ [convolutional]
1031
+ batch_normalize=1
1032
+ size=3
1033
+ stride=1
1034
+ pad=1
1035
+ filters=320
1036
+ activation=swish
1037
+
1038
+ [convolutional]
1039
+ size=1
1040
+ stride=1
1041
+ pad=1
1042
+ filters=255
1043
+ #activation=linear
1044
+ activation=logistic
1045
+
1046
+ [yolo]
1047
+ mask = 0,1,2
1048
+ anchors = 12,16, 19,36, 40,28, 36,75, 76,55, 72,146, 142,110, 192,243, 459,401
1049
+ classes=80
1050
+ num=9
1051
+ jitter=.1
1052
+ scale_x_y = 2.0
1053
+ objectness_smooth=1
1054
+ ignore_thresh = .7
1055
+ truth_thresh = 1
1056
+ #random=1
1057
+ resize=1.5
1058
+ iou_thresh=0.2
1059
+ iou_normalizer=0.05
1060
+ cls_normalizer=0.5
1061
+ obj_normalizer=1.0
1062
+ iou_loss=ciou
1063
+ nms_kind=diounms
1064
+ beta_nms=0.6
1065
+ new_coords=1
1066
+ max_delta=2
1067
+
1068
+
1069
+ # P4
1070
+ [route]
1071
+ layers = 129
1072
+
1073
+ [convolutional]
1074
+ batch_normalize=1
1075
+ size=3
1076
+ stride=1
1077
+ pad=1
1078
+ filters=640
1079
+ activation=swish
1080
+
1081
+ [convolutional]
1082
+ size=1
1083
+ stride=1
1084
+ pad=1
1085
+ filters=255
1086
+ #activation=linear
1087
+ activation=logistic
1088
+
1089
+ [yolo]
1090
+ mask = 3,4,5
1091
+ anchors = 12,16, 19,36, 40,28, 36,75, 76,55, 72,146, 142,110, 192,243, 459,401
1092
+ classes=80
1093
+ num=9
1094
+ jitter=.1
1095
+ scale_x_y = 2.0
1096
+ objectness_smooth=1
1097
+ ignore_thresh = .7
1098
+ truth_thresh = 1
1099
+ #random=1
1100
+ resize=1.5
1101
+ iou_thresh=0.2
1102
+ iou_normalizer=0.05
1103
+ cls_normalizer=0.5
1104
+ obj_normalizer=1.0
1105
+ iou_loss=ciou
1106
+ nms_kind=diounms
1107
+ beta_nms=0.6
1108
+ new_coords=1
1109
+ max_delta=2
1110
+
1111
+
1112
+ # P5
1113
+ [route]
1114
+ layers = 146
1115
+
1116
+ [convolutional]
1117
+ batch_normalize=1
1118
+ size=3
1119
+ stride=1
1120
+ pad=1
1121
+ filters=1280
1122
+ activation=swish
1123
+
1124
+ [convolutional]
1125
+ size=1
1126
+ stride=1
1127
+ pad=1
1128
+ filters=255
1129
+ #activation=linear
1130
+ activation=logistic
1131
+
1132
+ [yolo]
1133
+ mask = 6,7,8
1134
+ anchors = 12,16, 19,36, 40,28, 36,75, 76,55, 72,146, 142,110, 192,243, 459,401
1135
+ classes=80
1136
+ num=9
1137
+ jitter=.1
1138
+ scale_x_y = 2.0
1139
+ objectness_smooth=1
1140
+ ignore_thresh = .7
1141
+ truth_thresh = 1
1142
+ #random=1
1143
+ resize=1.5
1144
+ iou_thresh=0.2
1145
+ iou_normalizer=0.05
1146
+ cls_normalizer=0.5
1147
+ obj_normalizer=1.0
1148
+ iou_loss=ciou
1149
+ nms_kind=diounms
1150
+ beta_nms=0.6
1151
+ new_coords=1
1152
+ max_delta=2
testspace/models/yolov7/yolov7x.weights ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a3de8d79d6ab9b56ba34a82e0c0b021a5f073abb62132e9af6cc9a301673b1da
3
+ size 285638760
testspace/models/yolov8/coco.names ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ person
2
+ bicycle
3
+ car
4
+ motorbike
5
+ aeroplane
6
+ bus
7
+ train
8
+ truck
9
+ boat
10
+ traffic light
11
+ fire hydrant
12
+ stop sign
13
+ parking meter
14
+ bench
15
+ bird
16
+ cat
17
+ dog
18
+ horse
19
+ sheep
20
+ cow
21
+ elephant
22
+ bear
23
+ zebra
24
+ giraffe
25
+ backpack
26
+ umbrella
27
+ handbag
28
+ tie
29
+ suitcase
30
+ frisbee
31
+ skis
32
+ snowboard
33
+ sports ball
34
+ kite
35
+ baseball bat
36
+ baseball glove
37
+ skateboard
38
+ surfboard
39
+ tennis racket
40
+ bottle
41
+ wine glass
42
+ cup
43
+ fork
44
+ knife
45
+ spoon
46
+ bowl
47
+ banana
48
+ apple
49
+ sandwich
50
+ orange
51
+ broccoli
52
+ carrot
53
+ hot dog
54
+ pizza
55
+ donut
56
+ cake
57
+ chair
58
+ sofa
59
+ pottedplant
60
+ bed
61
+ diningtable
62
+ toilet
63
+ tvmonitor
64
+ laptop
65
+ mouse
66
+ remote
67
+ keyboard
68
+ cell phone
69
+ microwave
70
+ oven
71
+ toaster
72
+ sink
73
+ refrigerator
74
+ book
75
+ clock
76
+ vase
77
+ scissors
78
+ teddy bear
79
+ hair drier
80
+ toothbrush
testspace/models/yolov8/yolov8l.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:49a7205f006d70607431007030a9e010d851c37daeea439cc05b7e9cab4261ca
3
+ size 174915720
testspace/models/yolov8/yolov8m.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:23a4afeb86004219248a6576a5db65149479bded601a1d33fca45c2e33c7402a
3
+ size 103773640
testspace/models/yolov8/yolov8n.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ad24cdfc9653fdeac79dd984e56cbd74b6a51754a6b8a0572488bb7f3ea95938
3
+ size 12823637
testspace/models/yolov8/yolov8s.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:422a689c3a559a5bbd0aee5fdbeb046f3dfbb4b6ed6cc79bc5d11ffda9680de4
3
+ size 44842287
testspace/models/yolov8/yolov8x.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b5f141a10e963cb304e10358fa42cc8c8546cdeaba6d91c8885521e41082f9cb
3
+ size 273045003
testspace/models/yolov9/coco.names ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ person
2
+ bicycle
3
+ car
4
+ motorbike
5
+ aeroplane
6
+ bus
7
+ train
8
+ truck
9
+ boat
10
+ traffic light
11
+ fire hydrant
12
+ stop sign
13
+ parking meter
14
+ bench
15
+ bird
16
+ cat
17
+ dog
18
+ horse
19
+ sheep
20
+ cow
21
+ elephant
22
+ bear
23
+ zebra
24
+ giraffe
25
+ backpack
26
+ umbrella
27
+ handbag
28
+ tie
29
+ suitcase
30
+ frisbee
31
+ skis
32
+ snowboard
33
+ sports ball
34
+ kite
35
+ baseball bat
36
+ baseball glove
37
+ skateboard
38
+ surfboard
39
+ tennis racket
40
+ bottle
41
+ wine glass
42
+ cup
43
+ fork
44
+ knife
45
+ spoon
46
+ bowl
47
+ banana
48
+ apple
49
+ sandwich
50
+ orange
51
+ broccoli
52
+ carrot
53
+ hot dog
54
+ pizza
55
+ donut
56
+ cake
57
+ chair
58
+ sofa
59
+ pottedplant
60
+ bed
61
+ diningtable
62
+ toilet
63
+ tvmonitor
64
+ laptop
65
+ mouse
66
+ remote
67
+ keyboard
68
+ cell phone
69
+ microwave
70
+ oven
71
+ toaster
72
+ sink
73
+ refrigerator
74
+ book
75
+ clock
76
+ vase
77
+ scissors
78
+ teddy bear
79
+ hair drier
80
+ toothbrush
testspace/models/yolov9/yolov9-c-converted.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:61c31bdf5d8e65c5fecbd2bda6304678de59841c2419c459ebf44c860e86d9e1
3
+ size 101452559
testspace/models/yolov9/yolov9-e-converted.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:770c4559e2ba7c1a2c176d07c1041f9a89d22101dacf103a2ddd3139fe793336
3
+ size 229804426
testspace/models/yolov9/yolov9-m-converted.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:457a20138b3505c920af41d2f17e65bede65bc515661fa7518f11bcaa1149cc6
3
+ size 80200508
testspace/models/yolov9/yolov9-s-converted.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3171199a5c79d5d73f47d53a92264194120ca5287f9fa68f363030595338558b
3
+ size 28748339
testspace/models/yolov9/yolov9-t-converted.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ba3097518bcea7e59c41a09a12d6d94109850240cac58da185e2b1bde21fe3b0
3
+ size 8331824