Initial commit
Browse files- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1477.26 +/- 389.06
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2c757bd39a802fa4f0398e072a4320e3a0924d93733c519b1f4f5871401d180d
|
3 |
+
size 129363
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f39cb178430>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f39cb1784c0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f39cb178550>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f39cb1785e0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f39cb178670>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f39cb178700>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f39cb178790>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f39cb178820>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f39cb1788b0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f39cb178940>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f39cb1789d0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f39cb178a60>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f39cb6cf2c0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1673986446580024063,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVAQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZy9ob21lL2NocW1hL21pbmljb25kYTMvZW52cy9kZWVwLXJsLWNsYXNzL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGcvaG9tZS9jaHFtYS9taW5pY29uZGEzL2VudnMvZGVlcC1ybC1jbGFzcy9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAOwYVT9Up4++H/skP+2H/T8pqkjAod/jv0FKjL/gfnu/K9j5Pr5M9rwJ8jG/CKOHwO2MO79CW3c/f9IlP0rM2D8sKdG/az6WP7dk2z50uJa92KpJv6UlFTyw/+w/RINxQPBznL/U5Rg/IFgPwDqGqL8n9iE+IXbBPdrqFD86E0E/B34/P/T1oz7ySXo+E0YNv7f65T4uLpM/fYrevi/ccD+XgWA9WbqaP78s7z2tbMw+YH6fP3RCR73ZMFI+cCuEP55FTL/qNMs90uaYPpB2OL7wc5y/1OUYPyBYD8DWcEI/pcXLvSwFp7+gI5U+2yTDPiH5tj4kbcQ+9T7jvujLWL9AWW8+Lm8fvwQnKL+T0hW/1FKWvQxtoD73slQ/twg+PAXurD/RTag94njqvehOK7/g7VS/6+ivPsJISj9H+/o98HOcv9TlGD8gWA/A1nBCP86gdz9/Uxu/zlceP5A/0D9G0TW+G449P1gJSb+9MFG/Mg3/Pko8vD5CEim/uN2JvsZRDjzH7whAwxb7PpLIBT4CM2q/SsovQJAUNz/Q3u6++ddHv9CKvD69rQBAow0gP/BznL8pUNa/IFgPwNZwQj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACdSRc1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAaYebvQAAAAApWvC/AAAAAPZwMj0AAAAAXOffPwAAAAA9DZ69AAAAABrAAEAAAAAAcBKOPAAAAADiEeS/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASHAbNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgDwzXDwAAAAAJBDavwAAAADZGNM8AAAAALvt6j8AAAAAENLcvAAAAABVVeg/AAAAAMSR870AAAAAz6zcvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPwhnDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAV6q69AAAAAG3M+b8AAAAAhZYlvQAAAAAiufw/AAAAAIIwkD0AAAAAzpLsPwAAAAAQR6y9AAAAAJwq8b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQdNs0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAjpmxvAAAAADx/+a/AAAAAORnkLwAAAAANRnvPwAAAACm3f28AAAAAGta6D8AAAAA5045vQAAAAD3zOq/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJrzUtg8bJiMAWyUTegDjAF0lEdApTQ7+YMOPXV9lChoBkdAmb1aR6nivWgHTegDaAhHQKU2DysCDEp1fZQoaAZHQJoftf/m1Y1oB03oA2gIR0ClOJeuFHrhdX2UKGgGR0CbGh3Cbc46aAdN6ANoCEdApT4mkxh2GXV9lChoBkdAl6q2NrCWNWgHTegDaAhHQKU/b8l5WzZ1fZQoaAZHQJxcyrksBhhoB03oA2gIR0ClQU70Fr2ydX2UKGgGR0CcjlxBmf5DaAdN6ANoCEdApUO/pKSPl3V9lChoBkdAmgjGpuMuOGgHTegDaAhHQKVJSEh7mdR1fZQoaAZHQJpiAI4VARloB03oA2gIR0ClSokcsDnvdX2UKGgGR0CY0AbFjurqaAdN6ANoCEdApUxVsWO6unV9lChoBkdAlw6LBbfP5mgHTegDaAhHQKVO0zZ6D5F1fZQoaAZHQJtXvva11GNoB03oA2gIR0ClVGaQV9F4dX2UKGgGR0CbcoWPtD2KaAdN6ANoCEdApVWsvf0mMXV9lChoBkdAmonULDye7WgHTegDaAhHQKVXhUsnRb91fZQoaAZHQJoNPNpudf9oB03oA2gIR0ClWgpD/lySdX2UKGgGR0CZ/WkOqebvaAdN6ANoCEdApV+pgXuVo3V9lChoBkdAmRRDwc5sCWgHTegDaAhHQKVg7mW+oLp1fZQoaAZHQJlIZo24usdoB03oA2gIR0ClYskyLyc1dX2UKGgGR0CXyzf642CNaAdN6ANoCEdApWVG/+Kjz3V9lChoBkdAmZSH93r2QGgHTegDaAhHQKVqs59Vmz11fZQoaAZHQJtmpk7OmixoB03oA2gIR0Cla/dNet0WdX2UKGgGR0CbRSQVKwpwaAdN6ANoCEdApW3TW07bL3V9lChoBkdAmZWpR0lqrWgHTegDaAhHQKVwS0F8ohJ1fZQoaAZHQJOBw2m51/5oB03oA2gIR0CldcimuTzNdX2UKGgGR0CNbFWGRFI/aAdN6ANoCEdApXcPIKc/dXV9lChoBkdAmLQnK4hEB2gHTegDaAhHQKV42/xlQMx1fZQoaAZHQJcUmX8fmtBoB03oA2gIR0Cle06QvHtGdX2UKGgGR0CaguTW5H3DaAdN6ANoCEdApYDdnwob43V9lChoBkdAmdgoQvpQlGgHTegDaAhHQKWCKOlO45N1fZQoaAZHQJkTva0x/NJoB03oA2gIR0Clg/+CbtqpdX2UKGgGR0CY+qQYk3S8aAdN6ANoCEdApYZ8k6cRUXV9lChoBkdAl17VUVBUrGgHTegDaAhHQKWL8QAdXDF1fZQoaAZHQJSCvqOcUdtoB03oA2gIR0CljSzgdfb9dX2UKGgGR0CWd/vWpZOjaAdN6ANoCEdApY7s/yGzr3V9lChoBkdAjhHij+Jgs2gHTegDaAhHQKWRdDx9XtB1fZQoaAZHQJIPTZ26kIpoB03oA2gIR0Cllu6w2VFAdX2UKGgGR0BbuJBX0XgtaAdN6ANoCEdApZgp1A7gbnV9lChoBkdAltl+nl4keWgHTegDaAhHQKWZ+Fi8Wbh1fZQoaAZHQJfoXqjafz1oB03oA2gIR0ClnHXMQmNSdX2UKGgGR0CZuebPQfITaAdN6ANoCEdApaH9apxWDHV9lChoBkdAl/UOfAbhnGgHTegDaAhHQKWjSCkoF3Z1fZQoaAZHQJAXCthd+odoB03oA2gIR0ClpRQd8zAOdX2UKGgGR0CNLQMZxaPkaAdN6ANoCEdApaebM3ZPEnV9lChoBkdAltw/hhpg1GgHTegDaAhHQKWtHZ+x4Y91fZQoaAZHQJjMFF7Uoa1oB03oA2gIR0ClrmZH/cWTdX2UKGgGR0CXt4lIEr5JaAdN6ANoCEdApbA4GwA2h3V9lChoBkdAkkeg7cO9WmgHTegDaAhHQKWywY0l7dB1fZQoaAZHQJbi9PGhmGxoB03oA2gIR0CluFLLhaTwdX2UKGgGR0CZo7XRw6yTaAdN6ANoCEdApbmdme18cHV9lChoBkdAmE5DVUdaMmgHTegDaAhHQKW7c8XenAJ1fZQoaAZHQIL4G8wpON5oB03oA2gIR0Clvf+wC8vmdX2UKGgGR0CZTjwx33YdaAdN6ANoCEdApcOHSKFZgXV9lChoBkdAmj/yt7rs0GgHTegDaAhHQKXEzu/k/8l1fZQoaAZHQJjHer7wazhoB03oA2gIR0ClxrDLB9CvdX2UKGgGR0CWQNV7hNucaAdN6ANoCEdApck85IYm9nV9lChoBkdAmpEvN3W4E2gHTegDaAhHQKXOttv4ubt1fZQoaAZHQJyAKRdQfp5oB03oA2gIR0Cl0ASd4FA3dX2UKGgGR0CQLqIo3JgcaAdN6ANoCEdApdHotcv/R3V9lChoBkdAkDUkaIeo1mgHTegDaAhHQKXUi8cMmWt1fZQoaAZHQJXqA4bS7XhoB03oA2gIR0Cl2kXB55Z9dX2UKGgGR0CZs8/hVENOaAdN6ANoCEdApduOJP69CnV9lChoBkdAmbjch9srNGgHTegDaAhHQKXdaY/FBIF1fZQoaAZHQJlDZOclPadoB03oA2gIR0Cl3+Cu2Zy/dX2UKGgGR0CbSE/ZM+NcaAdN6ANoCEdApeVJFqi48XV9lChoBkdAfHzRxtHhCWgHTegDaAhHQKXmhvJiiIt1fZQoaAZHQJ0D7e0ojOdoB03oA2gIR0Cl6FIhY/3WdX2UKGgGR0CbRpp9ZzPsaAdN6ANoCEdAperVmg8KX3V9lChoBkdAmJX7lJYkmmgHTegDaAhHQKXwQpI+W4V1fZQoaAZHQJjGR5GBnSRoB03oA2gIR0Cl8YIPTXrddX2UKGgGR0CaVjqEvkBCaAdN6ANoCEdApfNJg5R0l3V9lChoBkdAm0II/7iyZGgHTegDaAhHQKX1sku6ErZ1fZQoaAZHQJN2Vm16Vt5oB03oA2gIR0Cl+zMt9QXRdX2UKGgGR0CaIHWP91loaAdN6ANoCEdApfxsaXKKYXV9lChoBkdAhJaBsqJ/G2gHTegDaAhHQKX+QRxtHhF1fZQoaAZHQJiaXAZbY9RoB03oA2gIR0CmALZhz/6wdX2UKGgGR0CVotNMoMKDaAdN6ANoCEdApgZKT6i0wHV9lChoBkdAm/WtMoMKC2gHTegDaAhHQKYHnpHqeK91fZQoaAZHQJyg9tcfNiZoB03oA2gIR0CmCX5lFtsOdX2UKGgGR0CchEreZXuFaAdN6ANoCEdApgv9NtZV43V9lChoBkdAmiYjZ6D5CWgHTegDaAhHQKYRa5xzaK11fZQoaAZHQJwIVQ2uPmxoB03oA2gIR0CmEqQbMotudX2UKGgGR0CcpEbM5fdAaAdN6ANoCEdAphSC4pc5bXV9lChoBkdAmlS6mTC+DmgHTegDaAhHQKYXBdxAB1d1fZQoaAZHQJrkg4Qz1sdoB03oA2gIR0CmHHmo73fydX2UKGgGR0CYpB0wJw85aAdN6ANoCEdAph3iJMxoI3V9lChoBkdAmvTbgOz6amgHTegDaAhHQKYfuLyc0+F1fZQoaAZHQJatG/TLGJhoB03oA2gIR0CmIimaQV9GdX2UKGgGR0COndHz6JqJaAdN6ANoCEdApieLHdXT3XV9lChoBkdAnDPugQHzH2gHTegDaAhHQKYowtJWeYl1fZQoaAZHQIczXuAqd6NoB03oA2gIR0CmKocsUZeidX2UKGgGR0Ca5JF+uvECaAdN6ANoCEdApiz5sKsuF3V9lChoBkdAlOIpIpYs/mgHTegDaAhHQKYycqHXVb11fZQoaAZHQJQbr0Cih39oB03oA2gIR0CmM7IPsiSrdX2UKGgGR0CUV+mEoOQRaAdN6ANoCEdApjWLtgKF7HV9lChoBkdAm7oXL3bmEGgHTegDaAhHQKY4Azdk8Rt1fZQoaAZHQJlgj3evZAZoB03oA2gIR0CmPXkOqebvdX2UKGgGR0CXpOR+BpYcaAdN6ANoCEdApj6vtD2JznV9lChoBkdAnXVb1Iy0r2gHTegDaAhHQKZAdG96C191fZQoaAZHQJecdo+Ofd1oB03oA2gIR0CmQuda+vhZdX2UKGgGR0CaXVTMaCL/aAdN6ANoCEdApkg0qnWJ8HVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:80054dcdce17a6d207aa6df345b044fb95f3d2b159eafd662a3c635f21f3f88f
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:047cdd6102d4b1b96299029c3d13cad7aa4caeea5c48e209ac193e2f1ca18ed1
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.102.1-microsoft-standard-WSL2-x86_64-with-glibc2.31 # 1 SMP Wed Mar 2 00:30:59 UTC 2022
|
2 |
+
- Python: 3.9.15
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.2
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f39cb178430>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f39cb1784c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f39cb178550>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f39cb1785e0>", "_build": "<function ActorCriticPolicy._build at 0x7f39cb178670>", "forward": "<function ActorCriticPolicy.forward at 0x7f39cb178700>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f39cb178790>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f39cb178820>", "_predict": "<function ActorCriticPolicy._predict at 0x7f39cb1788b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f39cb178940>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f39cb1789d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f39cb178a60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f39cb6cf2c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673986446580024063, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVAQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZy9ob21lL2NocW1hL21pbmljb25kYTMvZW52cy9kZWVwLXJsLWNsYXNzL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGcvaG9tZS9jaHFtYS9taW5pY29uZGEzL2VudnMvZGVlcC1ybC1jbGFzcy9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAOwYVT9Up4++H/skP+2H/T8pqkjAod/jv0FKjL/gfnu/K9j5Pr5M9rwJ8jG/CKOHwO2MO79CW3c/f9IlP0rM2D8sKdG/az6WP7dk2z50uJa92KpJv6UlFTyw/+w/RINxQPBznL/U5Rg/IFgPwDqGqL8n9iE+IXbBPdrqFD86E0E/B34/P/T1oz7ySXo+E0YNv7f65T4uLpM/fYrevi/ccD+XgWA9WbqaP78s7z2tbMw+YH6fP3RCR73ZMFI+cCuEP55FTL/qNMs90uaYPpB2OL7wc5y/1OUYPyBYD8DWcEI/pcXLvSwFp7+gI5U+2yTDPiH5tj4kbcQ+9T7jvujLWL9AWW8+Lm8fvwQnKL+T0hW/1FKWvQxtoD73slQ/twg+PAXurD/RTag94njqvehOK7/g7VS/6+ivPsJISj9H+/o98HOcv9TlGD8gWA/A1nBCP86gdz9/Uxu/zlceP5A/0D9G0TW+G449P1gJSb+9MFG/Mg3/Pko8vD5CEim/uN2JvsZRDjzH7whAwxb7PpLIBT4CM2q/SsovQJAUNz/Q3u6++ddHv9CKvD69rQBAow0gP/BznL8pUNa/IFgPwNZwQj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACdSRc1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAaYebvQAAAAApWvC/AAAAAPZwMj0AAAAAXOffPwAAAAA9DZ69AAAAABrAAEAAAAAAcBKOPAAAAADiEeS/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASHAbNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgDwzXDwAAAAAJBDavwAAAADZGNM8AAAAALvt6j8AAAAAENLcvAAAAABVVeg/AAAAAMSR870AAAAAz6zcvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPwhnDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAV6q69AAAAAG3M+b8AAAAAhZYlvQAAAAAiufw/AAAAAIIwkD0AAAAAzpLsPwAAAAAQR6y9AAAAAJwq8b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQdNs0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAjpmxvAAAAADx/+a/AAAAAORnkLwAAAAANRnvPwAAAACm3f28AAAAAGta6D8AAAAA5045vQAAAAD3zOq/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJrzUtg8bJiMAWyUTegDjAF0lEdApTQ7+YMOPXV9lChoBkdAmb1aR6nivWgHTegDaAhHQKU2DysCDEp1fZQoaAZHQJoftf/m1Y1oB03oA2gIR0ClOJeuFHrhdX2UKGgGR0CbGh3Cbc46aAdN6ANoCEdApT4mkxh2GXV9lChoBkdAl6q2NrCWNWgHTegDaAhHQKU/b8l5WzZ1fZQoaAZHQJxcyrksBhhoB03oA2gIR0ClQU70Fr2ydX2UKGgGR0CcjlxBmf5DaAdN6ANoCEdApUO/pKSPl3V9lChoBkdAmgjGpuMuOGgHTegDaAhHQKVJSEh7mdR1fZQoaAZHQJpiAI4VARloB03oA2gIR0ClSokcsDnvdX2UKGgGR0CY0AbFjurqaAdN6ANoCEdApUxVsWO6unV9lChoBkdAlw6LBbfP5mgHTegDaAhHQKVO0zZ6D5F1fZQoaAZHQJtXvva11GNoB03oA2gIR0ClVGaQV9F4dX2UKGgGR0CbcoWPtD2KaAdN6ANoCEdApVWsvf0mMXV9lChoBkdAmonULDye7WgHTegDaAhHQKVXhUsnRb91fZQoaAZHQJoNPNpudf9oB03oA2gIR0ClWgpD/lySdX2UKGgGR0CZ/WkOqebvaAdN6ANoCEdApV+pgXuVo3V9lChoBkdAmRRDwc5sCWgHTegDaAhHQKVg7mW+oLp1fZQoaAZHQJlIZo24usdoB03oA2gIR0ClYskyLyc1dX2UKGgGR0CXyzf642CNaAdN6ANoCEdApWVG/+Kjz3V9lChoBkdAmZSH93r2QGgHTegDaAhHQKVqs59Vmz11fZQoaAZHQJtmpk7OmixoB03oA2gIR0Cla/dNet0WdX2UKGgGR0CbRSQVKwpwaAdN6ANoCEdApW3TW07bL3V9lChoBkdAmZWpR0lqrWgHTegDaAhHQKVwS0F8ohJ1fZQoaAZHQJOBw2m51/5oB03oA2gIR0CldcimuTzNdX2UKGgGR0CNbFWGRFI/aAdN6ANoCEdApXcPIKc/dXV9lChoBkdAmLQnK4hEB2gHTegDaAhHQKV42/xlQMx1fZQoaAZHQJcUmX8fmtBoB03oA2gIR0Cle06QvHtGdX2UKGgGR0CaguTW5H3DaAdN6ANoCEdApYDdnwob43V9lChoBkdAmdgoQvpQlGgHTegDaAhHQKWCKOlO45N1fZQoaAZHQJkTva0x/NJoB03oA2gIR0Clg/+CbtqpdX2UKGgGR0CY+qQYk3S8aAdN6ANoCEdApYZ8k6cRUXV9lChoBkdAl17VUVBUrGgHTegDaAhHQKWL8QAdXDF1fZQoaAZHQJSCvqOcUdtoB03oA2gIR0CljSzgdfb9dX2UKGgGR0CWd/vWpZOjaAdN6ANoCEdApY7s/yGzr3V9lChoBkdAjhHij+Jgs2gHTegDaAhHQKWRdDx9XtB1fZQoaAZHQJIPTZ26kIpoB03oA2gIR0Cllu6w2VFAdX2UKGgGR0BbuJBX0XgtaAdN6ANoCEdApZgp1A7gbnV9lChoBkdAltl+nl4keWgHTegDaAhHQKWZ+Fi8Wbh1fZQoaAZHQJfoXqjafz1oB03oA2gIR0ClnHXMQmNSdX2UKGgGR0CZuebPQfITaAdN6ANoCEdApaH9apxWDHV9lChoBkdAl/UOfAbhnGgHTegDaAhHQKWjSCkoF3Z1fZQoaAZHQJAXCthd+odoB03oA2gIR0ClpRQd8zAOdX2UKGgGR0CNLQMZxaPkaAdN6ANoCEdApaebM3ZPEnV9lChoBkdAltw/hhpg1GgHTegDaAhHQKWtHZ+x4Y91fZQoaAZHQJjMFF7Uoa1oB03oA2gIR0ClrmZH/cWTdX2UKGgGR0CXt4lIEr5JaAdN6ANoCEdApbA4GwA2h3V9lChoBkdAkkeg7cO9WmgHTegDaAhHQKWywY0l7dB1fZQoaAZHQJbi9PGhmGxoB03oA2gIR0CluFLLhaTwdX2UKGgGR0CZo7XRw6yTaAdN6ANoCEdApbmdme18cHV9lChoBkdAmE5DVUdaMmgHTegDaAhHQKW7c8XenAJ1fZQoaAZHQIL4G8wpON5oB03oA2gIR0Clvf+wC8vmdX2UKGgGR0CZTjwx33YdaAdN6ANoCEdApcOHSKFZgXV9lChoBkdAmj/yt7rs0GgHTegDaAhHQKXEzu/k/8l1fZQoaAZHQJjHer7wazhoB03oA2gIR0ClxrDLB9CvdX2UKGgGR0CWQNV7hNucaAdN6ANoCEdApck85IYm9nV9lChoBkdAmpEvN3W4E2gHTegDaAhHQKXOttv4ubt1fZQoaAZHQJyAKRdQfp5oB03oA2gIR0Cl0ASd4FA3dX2UKGgGR0CQLqIo3JgcaAdN6ANoCEdApdHotcv/R3V9lChoBkdAkDUkaIeo1mgHTegDaAhHQKXUi8cMmWt1fZQoaAZHQJXqA4bS7XhoB03oA2gIR0Cl2kXB55Z9dX2UKGgGR0CZs8/hVENOaAdN6ANoCEdApduOJP69CnV9lChoBkdAmbjch9srNGgHTegDaAhHQKXdaY/FBIF1fZQoaAZHQJlDZOclPadoB03oA2gIR0Cl3+Cu2Zy/dX2UKGgGR0CbSE/ZM+NcaAdN6ANoCEdApeVJFqi48XV9lChoBkdAfHzRxtHhCWgHTegDaAhHQKXmhvJiiIt1fZQoaAZHQJ0D7e0ojOdoB03oA2gIR0Cl6FIhY/3WdX2UKGgGR0CbRpp9ZzPsaAdN6ANoCEdAperVmg8KX3V9lChoBkdAmJX7lJYkmmgHTegDaAhHQKXwQpI+W4V1fZQoaAZHQJjGR5GBnSRoB03oA2gIR0Cl8YIPTXrddX2UKGgGR0CaVjqEvkBCaAdN6ANoCEdApfNJg5R0l3V9lChoBkdAm0II/7iyZGgHTegDaAhHQKX1sku6ErZ1fZQoaAZHQJN2Vm16Vt5oB03oA2gIR0Cl+zMt9QXRdX2UKGgGR0CaIHWP91loaAdN6ANoCEdApfxsaXKKYXV9lChoBkdAhJaBsqJ/G2gHTegDaAhHQKX+QRxtHhF1fZQoaAZHQJiaXAZbY9RoB03oA2gIR0CmALZhz/6wdX2UKGgGR0CVotNMoMKDaAdN6ANoCEdApgZKT6i0wHV9lChoBkdAm/WtMoMKC2gHTegDaAhHQKYHnpHqeK91fZQoaAZHQJyg9tcfNiZoB03oA2gIR0CmCX5lFtsOdX2UKGgGR0CchEreZXuFaAdN6ANoCEdApgv9NtZV43V9lChoBkdAmiYjZ6D5CWgHTegDaAhHQKYRa5xzaK11fZQoaAZHQJwIVQ2uPmxoB03oA2gIR0CmEqQbMotudX2UKGgGR0CcpEbM5fdAaAdN6ANoCEdAphSC4pc5bXV9lChoBkdAmlS6mTC+DmgHTegDaAhHQKYXBdxAB1d1fZQoaAZHQJrkg4Qz1sdoB03oA2gIR0CmHHmo73fydX2UKGgGR0CYpB0wJw85aAdN6ANoCEdAph3iJMxoI3V9lChoBkdAmvTbgOz6amgHTegDaAhHQKYfuLyc0+F1fZQoaAZHQJatG/TLGJhoB03oA2gIR0CmIimaQV9GdX2UKGgGR0COndHz6JqJaAdN6ANoCEdApieLHdXT3XV9lChoBkdAnDPugQHzH2gHTegDaAhHQKYowtJWeYl1fZQoaAZHQIczXuAqd6NoB03oA2gIR0CmKocsUZeidX2UKGgGR0Ca5JF+uvECaAdN6ANoCEdApiz5sKsuF3V9lChoBkdAlOIpIpYs/mgHTegDaAhHQKYycqHXVb11fZQoaAZHQJQbr0Cih39oB03oA2gIR0CmM7IPsiSrdX2UKGgGR0CUV+mEoOQRaAdN6ANoCEdApjWLtgKF7HV9lChoBkdAm7oXL3bmEGgHTegDaAhHQKY4Azdk8Rt1fZQoaAZHQJlgj3evZAZoB03oA2gIR0CmPXkOqebvdX2UKGgGR0CXpOR+BpYcaAdN6ANoCEdApj6vtD2JznV9lChoBkdAnXVb1Iy0r2gHTegDaAhHQKZAdG96C191fZQoaAZHQJecdo+Ofd1oB03oA2gIR0CmQuda+vhZdX2UKGgGR0CaXVTMaCL/aAdN6ANoCEdApkg0qnWJ8HVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.102.1-microsoft-standard-WSL2-x86_64-with-glibc2.31 # 1 SMP Wed Mar 2 00:30:59 UTC 2022", "Python": "3.9.15", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1", "GPU Enabled": "True", "Numpy": "1.21.2", "Gym": "0.21.0"}}
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1477.2583788248244, "std_reward": 389.06479988655855, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-17T21:01:47.116555"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:407c4235c2cd94b384a0d254acf04b7a30f75e5880cc8f5a8b71a362ea9df0d6
|
3 |
+
size 2521
|