{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f39cb6cf2c0>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673986446580024063, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVAQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZy9ob21lL2NocW1hL21pbmljb25kYTMvZW52cy9kZWVwLXJsLWNsYXNzL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGcvaG9tZS9jaHFtYS9taW5pY29uZGEzL2VudnMvZGVlcC1ybC1jbGFzcy9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAOwYVT9Up4++H/skP+2H/T8pqkjAod/jv0FKjL/gfnu/K9j5Pr5M9rwJ8jG/CKOHwO2MO79CW3c/f9IlP0rM2D8sKdG/az6WP7dk2z50uJa92KpJv6UlFTyw/+w/RINxQPBznL/U5Rg/IFgPwDqGqL8n9iE+IXbBPdrqFD86E0E/B34/P/T1oz7ySXo+E0YNv7f65T4uLpM/fYrevi/ccD+XgWA9WbqaP78s7z2tbMw+YH6fP3RCR73ZMFI+cCuEP55FTL/qNMs90uaYPpB2OL7wc5y/1OUYPyBYD8DWcEI/pcXLvSwFp7+gI5U+2yTDPiH5tj4kbcQ+9T7jvujLWL9AWW8+Lm8fvwQnKL+T0hW/1FKWvQxtoD73slQ/twg+PAXurD/RTag94njqvehOK7/g7VS/6+ivPsJISj9H+/o98HOcv9TlGD8gWA/A1nBCP86gdz9/Uxu/zlceP5A/0D9G0TW+G449P1gJSb+9MFG/Mg3/Pko8vD5CEim/uN2JvsZRDjzH7whAwxb7PpLIBT4CM2q/SsovQJAUNz/Q3u6++ddHv9CKvD69rQBAow0gP/BznL8pUNa/IFgPwNZwQj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACdSRc1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAaYebvQAAAAApWvC/AAAAAPZwMj0AAAAAXOffPwAAAAA9DZ69AAAAABrAAEAAAAAAcBKOPAAAAADiEeS/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASHAbNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgDwzXDwAAAAAJBDavwAAAADZGNM8AAAAALvt6j8AAAAAENLcvAAAAABVVeg/AAAAAMSR870AAAAAz6zcvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPwhnDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAV6q69AAAAAG3M+b8AAAAAhZYlvQAAAAAiufw/AAAAAIIwkD0AAAAAzpLsPwAAAAAQR6y9AAAAAJwq8b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQdNs0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAjpmxvAAAAADx/+a/AAAAAORnkLwAAAAANRnvPwAAAACm3f28AAAAAGta6D8AAAAA5045vQAAAAD3zOq/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJrzUtg8bJiMAWyUTegDjAF0lEdApTQ7+YMOPXV9lChoBkdAmb1aR6nivWgHTegDaAhHQKU2DysCDEp1fZQoaAZHQJoftf/m1Y1oB03oA2gIR0ClOJeuFHrhdX2UKGgGR0CbGh3Cbc46aAdN6ANoCEdApT4mkxh2GXV9lChoBkdAl6q2NrCWNWgHTegDaAhHQKU/b8l5WzZ1fZQoaAZHQJxcyrksBhhoB03oA2gIR0ClQU70Fr2ydX2UKGgGR0CcjlxBmf5DaAdN6ANoCEdApUO/pKSPl3V9lChoBkdAmgjGpuMuOGgHTegDaAhHQKVJSEh7mdR1fZQoaAZHQJpiAI4VARloB03oA2gIR0ClSokcsDnvdX2UKGgGR0CY0AbFjurqaAdN6ANoCEdApUxVsWO6unV9lChoBkdAlw6LBbfP5mgHTegDaAhHQKVO0zZ6D5F1fZQoaAZHQJtXvva11GNoB03oA2gIR0ClVGaQV9F4dX2UKGgGR0CbcoWPtD2KaAdN6ANoCEdApVWsvf0mMXV9lChoBkdAmonULDye7WgHTegDaAhHQKVXhUsnRb91fZQoaAZHQJoNPNpudf9oB03oA2gIR0ClWgpD/lySdX2UKGgGR0CZ/WkOqebvaAdN6ANoCEdApV+pgXuVo3V9lChoBkdAmRRDwc5sCWgHTegDaAhHQKVg7mW+oLp1fZQoaAZHQJlIZo24usdoB03oA2gIR0ClYskyLyc1dX2UKGgGR0CXyzf642CNaAdN6ANoCEdApWVG/+Kjz3V9lChoBkdAmZSH93r2QGgHTegDaAhHQKVqs59Vmz11fZQoaAZHQJtmpk7OmixoB03oA2gIR0Cla/dNet0WdX2UKGgGR0CbRSQVKwpwaAdN6ANoCEdApW3TW07bL3V9lChoBkdAmZWpR0lqrWgHTegDaAhHQKVwS0F8ohJ1fZQoaAZHQJOBw2m51/5oB03oA2gIR0CldcimuTzNdX2UKGgGR0CNbFWGRFI/aAdN6ANoCEdApXcPIKc/dXV9lChoBkdAmLQnK4hEB2gHTegDaAhHQKV42/xlQMx1fZQoaAZHQJcUmX8fmtBoB03oA2gIR0Cle06QvHtGdX2UKGgGR0CaguTW5H3DaAdN6ANoCEdApYDdnwob43V9lChoBkdAmdgoQvpQlGgHTegDaAhHQKWCKOlO45N1fZQoaAZHQJkTva0x/NJoB03oA2gIR0Clg/+CbtqpdX2UKGgGR0CY+qQYk3S8aAdN6ANoCEdApYZ8k6cRUXV9lChoBkdAl17VUVBUrGgHTegDaAhHQKWL8QAdXDF1fZQoaAZHQJSCvqOcUdtoB03oA2gIR0CljSzgdfb9dX2UKGgGR0CWd/vWpZOjaAdN6ANoCEdApY7s/yGzr3V9lChoBkdAjhHij+Jgs2gHTegDaAhHQKWRdDx9XtB1fZQoaAZHQJIPTZ26kIpoB03oA2gIR0Cllu6w2VFAdX2UKGgGR0BbuJBX0XgtaAdN6ANoCEdApZgp1A7gbnV9lChoBkdAltl+nl4keWgHTegDaAhHQKWZ+Fi8Wbh1fZQoaAZHQJfoXqjafz1oB03oA2gIR0ClnHXMQmNSdX2UKGgGR0CZuebPQfITaAdN6ANoCEdApaH9apxWDHV9lChoBkdAl/UOfAbhnGgHTegDaAhHQKWjSCkoF3Z1fZQoaAZHQJAXCthd+odoB03oA2gIR0ClpRQd8zAOdX2UKGgGR0CNLQMZxaPkaAdN6ANoCEdApaebM3ZPEnV9lChoBkdAltw/hhpg1GgHTegDaAhHQKWtHZ+x4Y91fZQoaAZHQJjMFF7Uoa1oB03oA2gIR0ClrmZH/cWTdX2UKGgGR0CXt4lIEr5JaAdN6ANoCEdApbA4GwA2h3V9lChoBkdAkkeg7cO9WmgHTegDaAhHQKWywY0l7dB1fZQoaAZHQJbi9PGhmGxoB03oA2gIR0CluFLLhaTwdX2UKGgGR0CZo7XRw6yTaAdN6ANoCEdApbmdme18cHV9lChoBkdAmE5DVUdaMmgHTegDaAhHQKW7c8XenAJ1fZQoaAZHQIL4G8wpON5oB03oA2gIR0Clvf+wC8vmdX2UKGgGR0CZTjwx33YdaAdN6ANoCEdApcOHSKFZgXV9lChoBkdAmj/yt7rs0GgHTegDaAhHQKXEzu/k/8l1fZQoaAZHQJjHer7wazhoB03oA2gIR0ClxrDLB9CvdX2UKGgGR0CWQNV7hNucaAdN6ANoCEdApck85IYm9nV9lChoBkdAmpEvN3W4E2gHTegDaAhHQKXOttv4ubt1fZQoaAZHQJyAKRdQfp5oB03oA2gIR0Cl0ASd4FA3dX2UKGgGR0CQLqIo3JgcaAdN6ANoCEdApdHotcv/R3V9lChoBkdAkDUkaIeo1mgHTegDaAhHQKXUi8cMmWt1fZQoaAZHQJXqA4bS7XhoB03oA2gIR0Cl2kXB55Z9dX2UKGgGR0CZs8/hVENOaAdN6ANoCEdApduOJP69CnV9lChoBkdAmbjch9srNGgHTegDaAhHQKXdaY/FBIF1fZQoaAZHQJlDZOclPadoB03oA2gIR0Cl3+Cu2Zy/dX2UKGgGR0CbSE/ZM+NcaAdN6ANoCEdApeVJFqi48XV9lChoBkdAfHzRxtHhCWgHTegDaAhHQKXmhvJiiIt1fZQoaAZHQJ0D7e0ojOdoB03oA2gIR0Cl6FIhY/3WdX2UKGgGR0CbRpp9ZzPsaAdN6ANoCEdAperVmg8KX3V9lChoBkdAmJX7lJYkmmgHTegDaAhHQKXwQpI+W4V1fZQoaAZHQJjGR5GBnSRoB03oA2gIR0Cl8YIPTXrddX2UKGgGR0CaVjqEvkBCaAdN6ANoCEdApfNJg5R0l3V9lChoBkdAm0II/7iyZGgHTegDaAhHQKX1sku6ErZ1fZQoaAZHQJN2Vm16Vt5oB03oA2gIR0Cl+zMt9QXRdX2UKGgGR0CaIHWP91loaAdN6ANoCEdApfxsaXKKYXV9lChoBkdAhJaBsqJ/G2gHTegDaAhHQKX+QRxtHhF1fZQoaAZHQJiaXAZbY9RoB03oA2gIR0CmALZhz/6wdX2UKGgGR0CVotNMoMKDaAdN6ANoCEdApgZKT6i0wHV9lChoBkdAm/WtMoMKC2gHTegDaAhHQKYHnpHqeK91fZQoaAZHQJyg9tcfNiZoB03oA2gIR0CmCX5lFtsOdX2UKGgGR0CchEreZXuFaAdN6ANoCEdApgv9NtZV43V9lChoBkdAmiYjZ6D5CWgHTegDaAhHQKYRa5xzaK11fZQoaAZHQJwIVQ2uPmxoB03oA2gIR0CmEqQbMotudX2UKGgGR0CcpEbM5fdAaAdN6ANoCEdAphSC4pc5bXV9lChoBkdAmlS6mTC+DmgHTegDaAhHQKYXBdxAB1d1fZQoaAZHQJrkg4Qz1sdoB03oA2gIR0CmHHmo73fydX2UKGgGR0CYpB0wJw85aAdN6ANoCEdAph3iJMxoI3V9lChoBkdAmvTbgOz6amgHTegDaAhHQKYfuLyc0+F1fZQoaAZHQJatG/TLGJhoB03oA2gIR0CmIimaQV9GdX2UKGgGR0COndHz6JqJaAdN6ANoCEdApieLHdXT3XV9lChoBkdAnDPugQHzH2gHTegDaAhHQKYowtJWeYl1fZQoaAZHQIczXuAqd6NoB03oA2gIR0CmKocsUZeidX2UKGgGR0Ca5JF+uvECaAdN6ANoCEdApiz5sKsuF3V9lChoBkdAlOIpIpYs/mgHTegDaAhHQKYycqHXVb11fZQoaAZHQJQbr0Cih39oB03oA2gIR0CmM7IPsiSrdX2UKGgGR0CUV+mEoOQRaAdN6ANoCEdApjWLtgKF7HV9lChoBkdAm7oXL3bmEGgHTegDaAhHQKY4Azdk8Rt1fZQoaAZHQJlgj3evZAZoB03oA2gIR0CmPXkOqebvdX2UKGgGR0CXpOR+BpYcaAdN6ANoCEdApj6vtD2JznV9lChoBkdAnXVb1Iy0r2gHTegDaAhHQKZAdG96C191fZQoaAZHQJecdo+Ofd1oB03oA2gIR0CmQuda+vhZdX2UKGgGR0CaXVTMaCL/aAdN6ANoCEdApkg0qnWJ8HVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.102.1-microsoft-standard-WSL2-x86_64-with-glibc2.31 # 1 SMP Wed Mar 2 00:30:59 UTC 2022", "Python": "3.9.15", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1", "GPU Enabled": "True", "Numpy": "1.21.2", "Gym": "0.21.0"}}