chqmatteo commited on
Commit
15ac740
1 Parent(s): c81c30d

Upload . with huggingface_hub

Browse files
.summary/0/events.out.tfevents.1677226122.pop-os ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eee1a1ceac24b1cdd5511470eba4f682f4a31b2f1c5a5f77abee92d119944a3c
3
+ size 226374
README.md CHANGED
@@ -15,7 +15,7 @@ model-index:
15
  type: doom_health_gathering_supreme
16
  metrics:
17
  - type: mean_reward
18
- value: 8.70 +/- 5.10
19
  name: mean_reward
20
  verified: false
21
  ---
 
15
  type: doom_health_gathering_supreme
16
  metrics:
17
  - type: mean_reward
18
+ value: 12.47 +/- 6.32
19
  name: mean_reward
20
  verified: false
21
  ---
checkpoint_p0/best_000001131_4632576_reward_31.137.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6572c07a4e95d77ce151d2fb8f63327845b28353c7651a6e48320251fe81e3e7
3
+ size 34928806
checkpoint_p0/checkpoint_000001284_5259264.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bfd558f9840d8b908cbebd30bb7769592f04d00dd63108e4e38da21a4a257775
3
+ size 34929220
checkpoint_p0/checkpoint_000001361_5574656.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:05b462b48f3f461d4c1b5463f1bdc60d6fccb151fcc820851e31ed4e9ac9f170
3
+ size 34929220
sf_log.txt CHANGED
@@ -831,3 +831,724 @@ main_loop: 47.3880
831
  [2023-02-24 08:07:49,763][795538] Avg episode rewards: #0: 18.704, true rewards: #0: 8.704
832
  [2023-02-24 08:07:49,764][795538] Avg episode reward: 18.704, avg true_objective: 8.704
833
  [2023-02-24 08:07:53,791][795538] Replay video saved to /mnt/chqma/data-ssd-01/dataset/oss/RWKV-LM/deep-rl-class/notebooks/unit8/train_dir/default_experiment/replay.mp4!
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
831
  [2023-02-24 08:07:49,763][795538] Avg episode rewards: #0: 18.704, true rewards: #0: 8.704
832
  [2023-02-24 08:07:49,764][795538] Avg episode reward: 18.704, avg true_objective: 8.704
833
  [2023-02-24 08:07:53,791][795538] Replay video saved to /mnt/chqma/data-ssd-01/dataset/oss/RWKV-LM/deep-rl-class/notebooks/unit8/train_dir/default_experiment/replay.mp4!
834
+ [2023-02-24 08:08:19,273][795538] The model has been pushed to https://huggingface.co/chqmatteo/rl_course_vizdoom_health_gathering_supreme
835
+ [2023-02-24 08:08:42,140][795538] Environment doom_basic already registered, overwriting...
836
+ [2023-02-24 08:08:42,141][795538] Environment doom_two_colors_easy already registered, overwriting...
837
+ [2023-02-24 08:08:42,142][795538] Environment doom_two_colors_hard already registered, overwriting...
838
+ [2023-02-24 08:08:42,142][795538] Environment doom_dm already registered, overwriting...
839
+ [2023-02-24 08:08:42,142][795538] Environment doom_dwango5 already registered, overwriting...
840
+ [2023-02-24 08:08:42,143][795538] Environment doom_my_way_home_flat_actions already registered, overwriting...
841
+ [2023-02-24 08:08:42,143][795538] Environment doom_defend_the_center_flat_actions already registered, overwriting...
842
+ [2023-02-24 08:08:42,143][795538] Environment doom_my_way_home already registered, overwriting...
843
+ [2023-02-24 08:08:42,144][795538] Environment doom_deadly_corridor already registered, overwriting...
844
+ [2023-02-24 08:08:42,144][795538] Environment doom_defend_the_center already registered, overwriting...
845
+ [2023-02-24 08:08:42,144][795538] Environment doom_defend_the_line already registered, overwriting...
846
+ [2023-02-24 08:08:42,145][795538] Environment doom_health_gathering already registered, overwriting...
847
+ [2023-02-24 08:08:42,145][795538] Environment doom_health_gathering_supreme already registered, overwriting...
848
+ [2023-02-24 08:08:42,145][795538] Environment doom_battle already registered, overwriting...
849
+ [2023-02-24 08:08:42,146][795538] Environment doom_battle2 already registered, overwriting...
850
+ [2023-02-24 08:08:42,146][795538] Environment doom_duel_bots already registered, overwriting...
851
+ [2023-02-24 08:08:42,146][795538] Environment doom_deathmatch_bots already registered, overwriting...
852
+ [2023-02-24 08:08:42,147][795538] Environment doom_duel already registered, overwriting...
853
+ [2023-02-24 08:08:42,147][795538] Environment doom_deathmatch_full already registered, overwriting...
854
+ [2023-02-24 08:08:42,148][795538] Environment doom_benchmark already registered, overwriting...
855
+ [2023-02-24 08:08:42,148][795538] register_encoder_factory: <function make_vizdoom_encoder at 0x7efd09ae12d0>
856
+ [2023-02-24 08:08:42,156][795538] Loading existing experiment configuration from /mnt/chqma/data-ssd-01/dataset/oss/RWKV-LM/deep-rl-class/notebooks/unit8/train_dir/default_experiment/config.json
857
+ [2023-02-24 08:08:42,157][795538] Experiment dir /mnt/chqma/data-ssd-01/dataset/oss/RWKV-LM/deep-rl-class/notebooks/unit8/train_dir/default_experiment already exists!
858
+ [2023-02-24 08:08:42,158][795538] Resuming existing experiment from /mnt/chqma/data-ssd-01/dataset/oss/RWKV-LM/deep-rl-class/notebooks/unit8/train_dir/default_experiment...
859
+ [2023-02-24 08:08:42,158][795538] Weights and Biases integration disabled
860
+ [2023-02-24 08:08:42,159][795538] Environment var CUDA_VISIBLE_DEVICES is 1
861
+ [2023-02-24 08:08:43,053][795538] Starting experiment with the following configuration:
862
+ help=False
863
+ algo=APPO
864
+ env=doom_health_gathering_supreme
865
+ experiment=default_experiment
866
+ train_dir=/mnt/chqma/data-ssd-01/dataset/oss/RWKV-LM/deep-rl-class/notebooks/unit8/train_dir
867
+ restart_behavior=resume
868
+ device=gpu
869
+ seed=None
870
+ num_policies=1
871
+ async_rl=True
872
+ serial_mode=False
873
+ batched_sampling=False
874
+ num_batches_to_accumulate=2
875
+ worker_num_splits=2
876
+ policy_workers_per_policy=1
877
+ max_policy_lag=1000
878
+ num_workers=8
879
+ num_envs_per_worker=4
880
+ batch_size=1024
881
+ num_batches_per_epoch=1
882
+ num_epochs=1
883
+ rollout=32
884
+ recurrence=32
885
+ shuffle_minibatches=False
886
+ gamma=0.99
887
+ reward_scale=1.0
888
+ reward_clip=1000.0
889
+ value_bootstrap=False
890
+ normalize_returns=True
891
+ exploration_loss_coeff=0.001
892
+ value_loss_coeff=0.5
893
+ kl_loss_coeff=0.0
894
+ exploration_loss=symmetric_kl
895
+ gae_lambda=0.95
896
+ ppo_clip_ratio=0.1
897
+ ppo_clip_value=0.2
898
+ with_vtrace=False
899
+ vtrace_rho=1.0
900
+ vtrace_c=1.0
901
+ optimizer=adam
902
+ adam_eps=1e-06
903
+ adam_beta1=0.9
904
+ adam_beta2=0.999
905
+ max_grad_norm=4.0
906
+ learning_rate=0.0001
907
+ lr_schedule=constant
908
+ lr_schedule_kl_threshold=0.008
909
+ lr_adaptive_min=1e-06
910
+ lr_adaptive_max=0.01
911
+ obs_subtract_mean=0.0
912
+ obs_scale=255.0
913
+ normalize_input=True
914
+ normalize_input_keys=None
915
+ decorrelate_experience_max_seconds=0
916
+ decorrelate_envs_on_one_worker=True
917
+ actor_worker_gpus=[]
918
+ set_workers_cpu_affinity=True
919
+ force_envs_single_thread=False
920
+ default_niceness=0
921
+ log_to_file=True
922
+ experiment_summaries_interval=10
923
+ flush_summaries_interval=30
924
+ stats_avg=100
925
+ summaries_use_frameskip=True
926
+ heartbeat_interval=20
927
+ heartbeat_reporting_interval=600
928
+ train_for_env_steps=40000000
929
+ train_for_seconds=10000000000
930
+ save_every_sec=120
931
+ keep_checkpoints=2
932
+ load_checkpoint_kind=latest
933
+ save_milestones_sec=-1
934
+ save_best_every_sec=5
935
+ save_best_metric=reward
936
+ save_best_after=100000
937
+ benchmark=False
938
+ encoder_mlp_layers=[512, 512]
939
+ encoder_conv_architecture=convnet_simple
940
+ encoder_conv_mlp_layers=[512]
941
+ use_rnn=True
942
+ rnn_size=512
943
+ rnn_type=gru
944
+ rnn_num_layers=1
945
+ decoder_mlp_layers=[]
946
+ nonlinearity=elu
947
+ policy_initialization=orthogonal
948
+ policy_init_gain=1.0
949
+ actor_critic_share_weights=True
950
+ adaptive_stddev=True
951
+ continuous_tanh_scale=0.0
952
+ initial_stddev=1.0
953
+ use_env_info_cache=False
954
+ env_gpu_actions=False
955
+ env_gpu_observations=True
956
+ env_frameskip=4
957
+ env_framestack=1
958
+ pixel_format=CHW
959
+ use_record_episode_statistics=False
960
+ with_wandb=False
961
+ wandb_user=None
962
+ wandb_project=sample_factory
963
+ wandb_group=None
964
+ wandb_job_type=SF
965
+ wandb_tags=[]
966
+ with_pbt=False
967
+ pbt_mix_policies_in_one_env=True
968
+ pbt_period_env_steps=5000000
969
+ pbt_start_mutation=20000000
970
+ pbt_replace_fraction=0.3
971
+ pbt_mutation_rate=0.15
972
+ pbt_replace_reward_gap=0.1
973
+ pbt_replace_reward_gap_absolute=1e-06
974
+ pbt_optimize_gamma=False
975
+ pbt_target_objective=true_objective
976
+ pbt_perturb_min=1.1
977
+ pbt_perturb_max=1.5
978
+ num_agents=-1
979
+ num_humans=0
980
+ num_bots=-1
981
+ start_bot_difficulty=None
982
+ timelimit=None
983
+ res_w=128
984
+ res_h=72
985
+ wide_aspect_ratio=False
986
+ eval_env_frameskip=1
987
+ fps=35
988
+ command_line=--env=doom_health_gathering_supreme --num_workers=8 --num_envs_per_worker=4 --train_for_env_steps=4000000
989
+ cli_args={'env': 'doom_health_gathering_supreme', 'num_workers': 8, 'num_envs_per_worker': 4, 'train_for_env_steps': 4000000}
990
+ git_hash=1a2374cbd09490752b14aee6fdecfe64db411550
991
+ git_repo_name=https://github.com/huggingface/deep-rl-class.git
992
+ [2023-02-24 08:08:43,053][795538] Saving configuration to /mnt/chqma/data-ssd-01/dataset/oss/RWKV-LM/deep-rl-class/notebooks/unit8/train_dir/default_experiment/config.json...
993
+ [2023-02-24 08:08:43,222][795538] Rollout worker 0 uses device cpu
994
+ [2023-02-24 08:08:43,223][795538] Rollout worker 1 uses device cpu
995
+ [2023-02-24 08:08:43,223][795538] Rollout worker 2 uses device cpu
996
+ [2023-02-24 08:08:43,223][795538] Rollout worker 3 uses device cpu
997
+ [2023-02-24 08:08:43,224][795538] Rollout worker 4 uses device cpu
998
+ [2023-02-24 08:08:43,224][795538] Rollout worker 5 uses device cpu
999
+ [2023-02-24 08:08:43,225][795538] Rollout worker 6 uses device cpu
1000
+ [2023-02-24 08:08:43,225][795538] Rollout worker 7 uses device cpu
1001
+ [2023-02-24 08:08:43,257][795538] Using GPUs [0] for process 0 (actually maps to GPUs [1])
1002
+ [2023-02-24 08:08:43,258][795538] InferenceWorker_p0-w0: min num requests: 2
1003
+ [2023-02-24 08:08:43,278][795538] Starting all processes...
1004
+ [2023-02-24 08:08:43,278][795538] Starting process learner_proc0
1005
+ [2023-02-24 08:08:43,328][795538] Starting all processes...
1006
+ [2023-02-24 08:08:43,329][795538] Starting process inference_proc0-0
1007
+ [2023-02-24 08:08:43,330][795538] Starting process rollout_proc0
1008
+ [2023-02-24 08:08:43,330][795538] Starting process rollout_proc1
1009
+ [2023-02-24 08:08:43,330][795538] Starting process rollout_proc2
1010
+ [2023-02-24 08:08:43,331][795538] Starting process rollout_proc3
1011
+ [2023-02-24 08:08:43,331][795538] Starting process rollout_proc4
1012
+ [2023-02-24 08:08:43,331][795538] Starting process rollout_proc5
1013
+ [2023-02-24 08:08:43,331][795538] Starting process rollout_proc6
1014
+ [2023-02-24 08:08:43,331][795538] Starting process rollout_proc7
1015
+ [2023-02-24 08:08:44,462][796098] Low niceness requires sudo!
1016
+ [2023-02-24 08:08:44,463][796098] Using GPUs [0] for process 0 (actually maps to GPUs [1])
1017
+ [2023-02-24 08:08:44,463][796098] Set environment var CUDA_VISIBLE_DEVICES to '1' (GPU indices [0]) for learning process 0
1018
+ [2023-02-24 08:08:44,484][796098] Num visible devices: 1
1019
+ [2023-02-24 08:08:44,522][796098] Starting seed is not provided
1020
+ [2023-02-24 08:08:44,522][796098] Using GPUs [0] for process 0 (actually maps to GPUs [1])
1021
+ [2023-02-24 08:08:44,523][796098] Initializing actor-critic model on device cuda:0
1022
+ [2023-02-24 08:08:44,523][796098] RunningMeanStd input shape: (3, 72, 128)
1023
+ [2023-02-24 08:08:44,524][796098] RunningMeanStd input shape: (1,)
1024
+ [2023-02-24 08:08:44,549][796098] ConvEncoder: input_channels=3
1025
+ [2023-02-24 08:08:44,706][796112] Low niceness requires sudo!
1026
+ [2023-02-24 08:08:44,707][796112] Using GPUs [0] for process 0 (actually maps to GPUs [1])
1027
+ [2023-02-24 08:08:44,707][796112] Set environment var CUDA_VISIBLE_DEVICES to '1' (GPU indices [0]) for inference process 0
1028
+ [2023-02-24 08:08:44,724][796112] Num visible devices: 1
1029
+ [2023-02-24 08:08:44,767][796113] Worker 2 uses CPU cores [2]
1030
+ [2023-02-24 08:08:44,802][796098] Conv encoder output size: 512
1031
+ [2023-02-24 08:08:44,810][796098] Policy head output size: 512
1032
+ [2023-02-24 08:08:44,842][796098] Created Actor Critic model with architecture:
1033
+ [2023-02-24 08:08:44,843][796098] ActorCriticSharedWeights(
1034
+ (obs_normalizer): ObservationNormalizer(
1035
+ (running_mean_std): RunningMeanStdDictInPlace(
1036
+ (running_mean_std): ModuleDict(
1037
+ (obs): RunningMeanStdInPlace()
1038
+ )
1039
+ )
1040
+ )
1041
+ (returns_normalizer): RecursiveScriptModule(original_name=RunningMeanStdInPlace)
1042
+ (encoder): VizdoomEncoder(
1043
+ (basic_encoder): ConvEncoder(
1044
+ (enc): RecursiveScriptModule(
1045
+ original_name=ConvEncoderImpl
1046
+ (conv_head): RecursiveScriptModule(
1047
+ original_name=Sequential
1048
+ (0): RecursiveScriptModule(original_name=Conv2d)
1049
+ (1): RecursiveScriptModule(original_name=ELU)
1050
+ (2): RecursiveScriptModule(original_name=Conv2d)
1051
+ (3): RecursiveScriptModule(original_name=ELU)
1052
+ (4): RecursiveScriptModule(original_name=Conv2d)
1053
+ (5): RecursiveScriptModule(original_name=ELU)
1054
+ )
1055
+ (mlp_layers): RecursiveScriptModule(
1056
+ original_name=Sequential
1057
+ (0): RecursiveScriptModule(original_name=Linear)
1058
+ (1): RecursiveScriptModule(original_name=ELU)
1059
+ )
1060
+ )
1061
+ )
1062
+ )
1063
+ (core): ModelCoreRNN(
1064
+ (core): GRU(512, 512)
1065
+ )
1066
+ (decoder): MlpDecoder(
1067
+ (mlp): Identity()
1068
+ )
1069
+ (critic_linear): Linear(in_features=512, out_features=1, bias=True)
1070
+ (action_parameterization): ActionParameterizationDefault(
1071
+ (distribution_linear): Linear(in_features=512, out_features=5, bias=True)
1072
+ )
1073
+ )
1074
+ [2023-02-24 08:08:44,946][796119] Worker 6 uses CPU cores [6]
1075
+ [2023-02-24 08:08:44,948][796117] Worker 5 uses CPU cores [5]
1076
+ [2023-02-24 08:08:45,059][796114] Worker 1 uses CPU cores [1]
1077
+ [2023-02-24 08:08:45,108][796115] Worker 3 uses CPU cores [3]
1078
+ [2023-02-24 08:08:45,108][796111] Worker 0 uses CPU cores [0]
1079
+ [2023-02-24 08:08:45,114][796118] Worker 4 uses CPU cores [4]
1080
+ [2023-02-24 08:08:45,164][796116] Worker 7 uses CPU cores [7]
1081
+ [2023-02-24 08:08:46,945][796098] Using optimizer <class 'torch.optim.adam.Adam'>
1082
+ [2023-02-24 08:08:46,945][796098] Loading state from checkpoint /mnt/chqma/data-ssd-01/dataset/oss/RWKV-LM/deep-rl-class/notebooks/unit8/train_dir/default_experiment/checkpoint_p0/checkpoint_000000403_1650688.pth...
1083
+ [2023-02-24 08:08:47,005][796098] Loading model from checkpoint
1084
+ [2023-02-24 08:08:47,007][796098] Loaded experiment state at self.train_step=403, self.env_steps=1650688
1085
+ [2023-02-24 08:08:47,007][796098] Initialized policy 0 weights for model version 403
1086
+ [2023-02-24 08:08:47,008][796098] LearnerWorker_p0 finished initialization!
1087
+ [2023-02-24 08:08:47,008][796098] Using GPUs [0] for process 0 (actually maps to GPUs [1])
1088
+ [2023-02-24 08:08:47,160][795538] Fps is (10 sec: nan, 60 sec: nan, 300 sec: nan). Total num frames: 1650688. Throughput: 0: nan. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
1089
+ [2023-02-24 08:08:48,101][796112] RunningMeanStd input shape: (3, 72, 128)
1090
+ [2023-02-24 08:08:48,101][796112] RunningMeanStd input shape: (1,)
1091
+ [2023-02-24 08:08:48,108][796112] ConvEncoder: input_channels=3
1092
+ [2023-02-24 08:08:48,178][796112] Conv encoder output size: 512
1093
+ [2023-02-24 08:08:48,178][796112] Policy head output size: 512
1094
+ [2023-02-24 08:08:49,152][795538] Inference worker 0-0 is ready!
1095
+ [2023-02-24 08:08:49,152][795538] All inference workers are ready! Signal rollout workers to start!
1096
+ [2023-02-24 08:08:49,171][796116] Doom resolution: 160x120, resize resolution: (128, 72)
1097
+ [2023-02-24 08:08:49,171][796118] Doom resolution: 160x120, resize resolution: (128, 72)
1098
+ [2023-02-24 08:08:49,170][796115] Doom resolution: 160x120, resize resolution: (128, 72)
1099
+ [2023-02-24 08:08:49,171][796119] Doom resolution: 160x120, resize resolution: (128, 72)
1100
+ [2023-02-24 08:08:49,175][796111] Doom resolution: 160x120, resize resolution: (128, 72)
1101
+ [2023-02-24 08:08:49,176][796117] Doom resolution: 160x120, resize resolution: (128, 72)
1102
+ [2023-02-24 08:08:49,204][796113] Doom resolution: 160x120, resize resolution: (128, 72)
1103
+ [2023-02-24 08:08:49,205][796114] Doom resolution: 160x120, resize resolution: (128, 72)
1104
+ [2023-02-24 08:08:49,421][796115] Decorrelating experience for 0 frames...
1105
+ [2023-02-24 08:08:49,457][796116] Decorrelating experience for 0 frames...
1106
+ [2023-02-24 08:08:49,467][796114] Decorrelating experience for 0 frames...
1107
+ [2023-02-24 08:08:49,471][796118] Decorrelating experience for 0 frames...
1108
+ [2023-02-24 08:08:49,475][796117] Decorrelating experience for 0 frames...
1109
+ [2023-02-24 08:08:49,653][796115] Decorrelating experience for 32 frames...
1110
+ [2023-02-24 08:08:49,732][796116] Decorrelating experience for 32 frames...
1111
+ [2023-02-24 08:08:49,752][796118] Decorrelating experience for 32 frames...
1112
+ [2023-02-24 08:08:49,758][796117] Decorrelating experience for 32 frames...
1113
+ [2023-02-24 08:08:49,795][796119] Decorrelating experience for 0 frames...
1114
+ [2023-02-24 08:08:49,932][796114] Decorrelating experience for 32 frames...
1115
+ [2023-02-24 08:08:50,017][796111] Decorrelating experience for 0 frames...
1116
+ [2023-02-24 08:08:50,033][796116] Decorrelating experience for 64 frames...
1117
+ [2023-02-24 08:08:50,071][796119] Decorrelating experience for 32 frames...
1118
+ [2023-02-24 08:08:50,078][796115] Decorrelating experience for 64 frames...
1119
+ [2023-02-24 08:08:50,109][796113] Decorrelating experience for 0 frames...
1120
+ [2023-02-24 08:08:50,145][796118] Decorrelating experience for 64 frames...
1121
+ [2023-02-24 08:08:50,241][796111] Decorrelating experience for 32 frames...
1122
+ [2023-02-24 08:08:50,325][796116] Decorrelating experience for 96 frames...
1123
+ [2023-02-24 08:08:50,338][796115] Decorrelating experience for 96 frames...
1124
+ [2023-02-24 08:08:50,377][796117] Decorrelating experience for 64 frames...
1125
+ [2023-02-24 08:08:50,445][796118] Decorrelating experience for 96 frames...
1126
+ [2023-02-24 08:08:50,502][796111] Decorrelating experience for 64 frames...
1127
+ [2023-02-24 08:08:50,527][796119] Decorrelating experience for 64 frames...
1128
+ [2023-02-24 08:08:50,669][796117] Decorrelating experience for 96 frames...
1129
+ [2023-02-24 08:08:50,704][796113] Decorrelating experience for 32 frames...
1130
+ [2023-02-24 08:08:50,716][796114] Decorrelating experience for 64 frames...
1131
+ [2023-02-24 08:08:50,804][796111] Decorrelating experience for 96 frames...
1132
+ [2023-02-24 08:08:50,833][796119] Decorrelating experience for 96 frames...
1133
+ [2023-02-24 08:08:50,958][796113] Decorrelating experience for 64 frames...
1134
+ [2023-02-24 08:08:50,977][796114] Decorrelating experience for 96 frames...
1135
+ [2023-02-24 08:08:51,210][796113] Decorrelating experience for 96 frames...
1136
+ [2023-02-24 08:08:52,160][795538] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 1650688. Throughput: 0: 0.0. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
1137
+ [2023-02-24 08:08:52,161][795538] Avg episode reward: [(0, '0.903')]
1138
+ [2023-02-24 08:08:52,586][796098] Signal inference workers to stop experience collection...
1139
+ [2023-02-24 08:08:52,593][796112] InferenceWorker_p0-w0: stopping experience collection
1140
+ [2023-02-24 08:08:54,537][796098] Signal inference workers to resume experience collection...
1141
+ [2023-02-24 08:08:54,538][796112] InferenceWorker_p0-w0: resuming experience collection
1142
+ [2023-02-24 08:08:57,090][796112] Updated weights for policy 0, policy_version 413 (0.0247)
1143
+ [2023-02-24 08:08:57,160][795538] Fps is (10 sec: 4096.0, 60 sec: 4096.0, 300 sec: 4096.0). Total num frames: 1691648. Throughput: 0: 332.8. Samples: 3328. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
1144
+ [2023-02-24 08:08:57,161][795538] Avg episode reward: [(0, '8.033')]
1145
+ [2023-02-24 08:08:59,657][796112] Updated weights for policy 0, policy_version 423 (0.0013)
1146
+ [2023-02-24 08:09:02,160][795538] Fps is (10 sec: 11878.4, 60 sec: 7918.9, 300 sec: 7918.9). Total num frames: 1769472. Throughput: 0: 1818.4. Samples: 27276. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
1147
+ [2023-02-24 08:09:02,161][795538] Avg episode reward: [(0, '21.201')]
1148
+ [2023-02-24 08:09:02,163][796098] Saving new best policy, reward=21.201!
1149
+ [2023-02-24 08:09:02,326][796112] Updated weights for policy 0, policy_version 433 (0.0009)
1150
+ [2023-02-24 08:09:03,254][795538] Heartbeat connected on LearnerWorker_p0
1151
+ [2023-02-24 08:09:03,262][795538] Heartbeat connected on InferenceWorker_p0-w0
1152
+ [2023-02-24 08:09:03,263][795538] Heartbeat connected on Batcher_0
1153
+ [2023-02-24 08:09:03,264][795538] Heartbeat connected on RolloutWorker_w1
1154
+ [2023-02-24 08:09:03,266][795538] Heartbeat connected on RolloutWorker_w2
1155
+ [2023-02-24 08:09:03,269][795538] Heartbeat connected on RolloutWorker_w3
1156
+ [2023-02-24 08:09:03,271][795538] Heartbeat connected on RolloutWorker_w0
1157
+ [2023-02-24 08:09:03,275][795538] Heartbeat connected on RolloutWorker_w5
1158
+ [2023-02-24 08:09:03,276][795538] Heartbeat connected on RolloutWorker_w4
1159
+ [2023-02-24 08:09:03,280][795538] Heartbeat connected on RolloutWorker_w7
1160
+ [2023-02-24 08:09:03,282][795538] Heartbeat connected on RolloutWorker_w6
1161
+ [2023-02-24 08:09:04,840][796112] Updated weights for policy 0, policy_version 443 (0.0007)
1162
+ [2023-02-24 08:09:07,160][795538] Fps is (10 sec: 15974.5, 60 sec: 10035.2, 300 sec: 10035.2). Total num frames: 1851392. Throughput: 0: 2569.2. Samples: 51384. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
1163
+ [2023-02-24 08:09:07,161][795538] Avg episode reward: [(0, '18.568')]
1164
+ [2023-02-24 08:09:07,343][796112] Updated weights for policy 0, policy_version 453 (0.0007)
1165
+ [2023-02-24 08:09:09,849][796112] Updated weights for policy 0, policy_version 463 (0.0006)
1166
+ [2023-02-24 08:09:12,160][795538] Fps is (10 sec: 16384.0, 60 sec: 11304.9, 300 sec: 11304.9). Total num frames: 1933312. Throughput: 0: 2543.8. Samples: 63594. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
1167
+ [2023-02-24 08:09:12,161][795538] Avg episode reward: [(0, '20.173')]
1168
+ [2023-02-24 08:09:12,344][796112] Updated weights for policy 0, policy_version 473 (0.0006)
1169
+ [2023-02-24 08:09:14,882][796112] Updated weights for policy 0, policy_version 483 (0.0007)
1170
+ [2023-02-24 08:09:17,160][795538] Fps is (10 sec: 16384.0, 60 sec: 12151.5, 300 sec: 12151.5). Total num frames: 2015232. Throughput: 0: 2934.7. Samples: 88042. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
1171
+ [2023-02-24 08:09:17,161][795538] Avg episode reward: [(0, '21.495')]
1172
+ [2023-02-24 08:09:17,162][796098] Saving new best policy, reward=21.495!
1173
+ [2023-02-24 08:09:17,416][796112] Updated weights for policy 0, policy_version 493 (0.0009)
1174
+ [2023-02-24 08:09:19,892][796112] Updated weights for policy 0, policy_version 503 (0.0006)
1175
+ [2023-02-24 08:09:22,160][795538] Fps is (10 sec: 16384.0, 60 sec: 12756.1, 300 sec: 12756.1). Total num frames: 2097152. Throughput: 0: 3214.6. Samples: 112512. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
1176
+ [2023-02-24 08:09:22,161][795538] Avg episode reward: [(0, '18.695')]
1177
+ [2023-02-24 08:09:22,364][796112] Updated weights for policy 0, policy_version 513 (0.0010)
1178
+ [2023-02-24 08:09:24,860][796112] Updated weights for policy 0, policy_version 523 (0.0007)
1179
+ [2023-02-24 08:09:27,160][795538] Fps is (10 sec: 16384.1, 60 sec: 13209.6, 300 sec: 13209.6). Total num frames: 2179072. Throughput: 0: 3120.8. Samples: 124832. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
1180
+ [2023-02-24 08:09:27,161][795538] Avg episode reward: [(0, '21.156')]
1181
+ [2023-02-24 08:09:27,388][796112] Updated weights for policy 0, policy_version 533 (0.0006)
1182
+ [2023-02-24 08:09:29,933][796112] Updated weights for policy 0, policy_version 543 (0.0011)
1183
+ [2023-02-24 08:09:32,160][795538] Fps is (10 sec: 15974.5, 60 sec: 13471.3, 300 sec: 13471.3). Total num frames: 2256896. Throughput: 0: 3315.7. Samples: 149206. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
1184
+ [2023-02-24 08:09:32,164][795538] Avg episode reward: [(0, '19.110')]
1185
+ [2023-02-24 08:09:32,491][796112] Updated weights for policy 0, policy_version 553 (0.0008)
1186
+ [2023-02-24 08:09:34,962][796112] Updated weights for policy 0, policy_version 563 (0.0006)
1187
+ [2023-02-24 08:09:37,160][795538] Fps is (10 sec: 15974.4, 60 sec: 13762.6, 300 sec: 13762.6). Total num frames: 2338816. Throughput: 0: 3865.1. Samples: 173928. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
1188
+ [2023-02-24 08:09:37,160][795538] Avg episode reward: [(0, '20.430')]
1189
+ [2023-02-24 08:09:37,443][796112] Updated weights for policy 0, policy_version 573 (0.0006)
1190
+ [2023-02-24 08:09:40,104][796112] Updated weights for policy 0, policy_version 583 (0.0007)
1191
+ [2023-02-24 08:09:42,160][795538] Fps is (10 sec: 15974.4, 60 sec: 13926.4, 300 sec: 13926.4). Total num frames: 2416640. Throughput: 0: 4050.8. Samples: 185616. Policy #0 lag: (min: 0.0, avg: 1.0, max: 2.0)
1192
+ [2023-02-24 08:09:42,160][795538] Avg episode reward: [(0, '22.387')]
1193
+ [2023-02-24 08:09:42,172][796098] Saving new best policy, reward=22.387!
1194
+ [2023-02-24 08:09:42,735][796112] Updated weights for policy 0, policy_version 593 (0.0008)
1195
+ [2023-02-24 08:09:45,371][796112] Updated weights for policy 0, policy_version 603 (0.0006)
1196
+ [2023-02-24 08:09:47,160][795538] Fps is (10 sec: 15974.3, 60 sec: 14131.2, 300 sec: 14131.2). Total num frames: 2498560. Throughput: 0: 4036.7. Samples: 208926. Policy #0 lag: (min: 0.0, avg: 1.0, max: 2.0)
1197
+ [2023-02-24 08:09:47,162][795538] Avg episode reward: [(0, '23.294')]
1198
+ [2023-02-24 08:09:47,163][796098] Saving new best policy, reward=23.294!
1199
+ [2023-02-24 08:09:47,936][796112] Updated weights for policy 0, policy_version 613 (0.0009)
1200
+ [2023-02-24 08:09:50,471][796112] Updated weights for policy 0, policy_version 623 (0.0006)
1201
+ [2023-02-24 08:09:52,160][795538] Fps is (10 sec: 15974.4, 60 sec: 15428.3, 300 sec: 14241.5). Total num frames: 2576384. Throughput: 0: 4030.0. Samples: 232734. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
1202
+ [2023-02-24 08:09:52,161][795538] Avg episode reward: [(0, '23.526')]
1203
+ [2023-02-24 08:09:52,164][796098] Saving new best policy, reward=23.526!
1204
+ [2023-02-24 08:09:53,087][796112] Updated weights for policy 0, policy_version 633 (0.0006)
1205
+ [2023-02-24 08:09:55,707][796112] Updated weights for policy 0, policy_version 643 (0.0007)
1206
+ [2023-02-24 08:09:57,160][795538] Fps is (10 sec: 15564.8, 60 sec: 16042.7, 300 sec: 14336.0). Total num frames: 2654208. Throughput: 0: 4017.6. Samples: 244384. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
1207
+ [2023-02-24 08:09:57,161][795538] Avg episode reward: [(0, '23.324')]
1208
+ [2023-02-24 08:09:58,316][796112] Updated weights for policy 0, policy_version 653 (0.0008)
1209
+ [2023-02-24 08:10:00,905][796112] Updated weights for policy 0, policy_version 663 (0.0006)
1210
+ [2023-02-24 08:10:02,160][795538] Fps is (10 sec: 15564.8, 60 sec: 16042.7, 300 sec: 14417.9). Total num frames: 2732032. Throughput: 0: 4002.8. Samples: 268166. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
1211
+ [2023-02-24 08:10:02,161][795538] Avg episode reward: [(0, '23.305')]
1212
+ [2023-02-24 08:10:03,498][796112] Updated weights for policy 0, policy_version 673 (0.0006)
1213
+ [2023-02-24 08:10:06,102][796112] Updated weights for policy 0, policy_version 683 (0.0006)
1214
+ [2023-02-24 08:10:07,160][795538] Fps is (10 sec: 15564.8, 60 sec: 15974.4, 300 sec: 14489.6). Total num frames: 2809856. Throughput: 0: 3723.8. Samples: 280082. Policy #0 lag: (min: 0.0, avg: 1.0, max: 2.0)
1215
+ [2023-02-24 08:10:07,162][795538] Avg episode reward: [(0, '24.939')]
1216
+ [2023-02-24 08:10:07,168][796098] Saving new best policy, reward=24.939!
1217
+ [2023-02-24 08:10:08,749][796112] Updated weights for policy 0, policy_version 693 (0.0006)
1218
+ [2023-02-24 08:10:11,316][796112] Updated weights for policy 0, policy_version 703 (0.0007)
1219
+ [2023-02-24 08:10:12,160][795538] Fps is (10 sec: 15974.4, 60 sec: 15974.4, 300 sec: 14601.0). Total num frames: 2891776. Throughput: 0: 3972.7. Samples: 303606. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
1220
+ [2023-02-24 08:10:12,161][795538] Avg episode reward: [(0, '27.390')]
1221
+ [2023-02-24 08:10:12,165][796098] Saving new best policy, reward=27.390!
1222
+ [2023-02-24 08:10:13,931][796112] Updated weights for policy 0, policy_version 713 (0.0006)
1223
+ [2023-02-24 08:10:16,517][796112] Updated weights for policy 0, policy_version 723 (0.0007)
1224
+ [2023-02-24 08:10:17,160][795538] Fps is (10 sec: 15974.5, 60 sec: 15906.1, 300 sec: 14654.6). Total num frames: 2969600. Throughput: 0: 3957.6. Samples: 327298. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
1225
+ [2023-02-24 08:10:17,160][795538] Avg episode reward: [(0, '23.654')]
1226
+ [2023-02-24 08:10:19,064][796112] Updated weights for policy 0, policy_version 733 (0.0006)
1227
+ [2023-02-24 08:10:21,654][796112] Updated weights for policy 0, policy_version 743 (0.0007)
1228
+ [2023-02-24 08:10:22,160][795538] Fps is (10 sec: 15564.9, 60 sec: 15837.9, 300 sec: 14702.5). Total num frames: 3047424. Throughput: 0: 3672.8. Samples: 339206. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
1229
+ [2023-02-24 08:10:22,161][795538] Avg episode reward: [(0, '23.892')]
1230
+ [2023-02-24 08:10:24,239][796112] Updated weights for policy 0, policy_version 753 (0.0007)
1231
+ [2023-02-24 08:10:26,790][796112] Updated weights for policy 0, policy_version 763 (0.0007)
1232
+ [2023-02-24 08:10:27,160][795538] Fps is (10 sec: 15974.3, 60 sec: 15837.8, 300 sec: 14786.6). Total num frames: 3129344. Throughput: 0: 3942.0. Samples: 363004. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
1233
+ [2023-02-24 08:10:27,161][795538] Avg episode reward: [(0, '24.204')]
1234
+ [2023-02-24 08:10:29,329][796112] Updated weights for policy 0, policy_version 773 (0.0007)
1235
+ [2023-02-24 08:10:31,939][796112] Updated weights for policy 0, policy_version 783 (0.0006)
1236
+ [2023-02-24 08:10:32,160][795538] Fps is (10 sec: 15974.3, 60 sec: 15837.9, 300 sec: 14823.6). Total num frames: 3207168. Throughput: 0: 3952.3. Samples: 386780. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
1237
+ [2023-02-24 08:10:32,161][795538] Avg episode reward: [(0, '26.121')]
1238
+ [2023-02-24 08:10:34,527][796112] Updated weights for policy 0, policy_version 793 (0.0006)
1239
+ [2023-02-24 08:10:37,160][796112] Updated weights for policy 0, policy_version 803 (0.0006)
1240
+ [2023-02-24 08:10:37,160][795538] Fps is (10 sec: 15974.5, 60 sec: 15837.9, 300 sec: 14894.6). Total num frames: 3289088. Throughput: 0: 3950.8. Samples: 410518. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
1241
+ [2023-02-24 08:10:37,161][795538] Avg episode reward: [(0, '24.946')]
1242
+ [2023-02-24 08:10:39,753][796112] Updated weights for policy 0, policy_version 813 (0.0007)
1243
+ [2023-02-24 08:10:42,160][795538] Fps is (10 sec: 15974.4, 60 sec: 15837.9, 300 sec: 14923.7). Total num frames: 3366912. Throughput: 0: 3957.0. Samples: 422448. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
1244
+ [2023-02-24 08:10:42,160][795538] Avg episode reward: [(0, '24.684')]
1245
+ [2023-02-24 08:10:42,164][796098] Saving /mnt/chqma/data-ssd-01/dataset/oss/RWKV-LM/deep-rl-class/notebooks/unit8/train_dir/default_experiment/checkpoint_p0/checkpoint_000000822_3366912.pth...
1246
+ [2023-02-24 08:10:42,260][796098] Removing /mnt/chqma/data-ssd-01/dataset/oss/RWKV-LM/deep-rl-class/notebooks/unit8/train_dir/default_experiment/checkpoint_p0/checkpoint_000000268_1097728.pth
1247
+ [2023-02-24 08:10:42,367][796112] Updated weights for policy 0, policy_version 823 (0.0006)
1248
+ [2023-02-24 08:10:44,973][796112] Updated weights for policy 0, policy_version 833 (0.0006)
1249
+ [2023-02-24 08:10:47,160][795538] Fps is (10 sec: 15564.7, 60 sec: 15769.6, 300 sec: 14950.4). Total num frames: 3444736. Throughput: 0: 3949.0. Samples: 445872. Policy #0 lag: (min: 0.0, avg: 1.0, max: 2.0)
1250
+ [2023-02-24 08:10:47,160][795538] Avg episode reward: [(0, '26.184')]
1251
+ [2023-02-24 08:10:47,617][796112] Updated weights for policy 0, policy_version 843 (0.0006)
1252
+ [2023-02-24 08:10:50,205][796112] Updated weights for policy 0, policy_version 853 (0.0007)
1253
+ [2023-02-24 08:10:52,160][795538] Fps is (10 sec: 15564.9, 60 sec: 15769.6, 300 sec: 14975.0). Total num frames: 3522560. Throughput: 0: 4210.3. Samples: 469546. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
1254
+ [2023-02-24 08:10:52,161][795538] Avg episode reward: [(0, '26.862')]
1255
+ [2023-02-24 08:10:52,756][796112] Updated weights for policy 0, policy_version 863 (0.0008)
1256
+ [2023-02-24 08:10:55,295][796112] Updated weights for policy 0, policy_version 873 (0.0006)
1257
+ [2023-02-24 08:10:57,160][795538] Fps is (10 sec: 15974.4, 60 sec: 15837.9, 300 sec: 15029.2). Total num frames: 3604480. Throughput: 0: 3953.6. Samples: 481518. Policy #0 lag: (min: 0.0, avg: 0.7, max: 1.0)
1258
+ [2023-02-24 08:10:57,161][795538] Avg episode reward: [(0, '25.390')]
1259
+ [2023-02-24 08:10:57,895][796112] Updated weights for policy 0, policy_version 883 (0.0007)
1260
+ [2023-02-24 08:11:00,550][796112] Updated weights for policy 0, policy_version 893 (0.0009)
1261
+ [2023-02-24 08:11:02,160][795538] Fps is (10 sec: 15974.2, 60 sec: 15837.8, 300 sec: 15049.0). Total num frames: 3682304. Throughput: 0: 3949.9. Samples: 505042. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
1262
+ [2023-02-24 08:11:02,161][795538] Avg episode reward: [(0, '25.427')]
1263
+ [2023-02-24 08:11:03,150][796112] Updated weights for policy 0, policy_version 903 (0.0008)
1264
+ [2023-02-24 08:11:05,738][796112] Updated weights for policy 0, policy_version 913 (0.0008)
1265
+ [2023-02-24 08:11:07,160][795538] Fps is (10 sec: 15564.9, 60 sec: 15837.9, 300 sec: 15067.4). Total num frames: 3760128. Throughput: 0: 4217.3. Samples: 528986. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
1266
+ [2023-02-24 08:11:07,161][795538] Avg episode reward: [(0, '25.526')]
1267
+ [2023-02-24 08:11:08,213][796112] Updated weights for policy 0, policy_version 923 (0.0006)
1268
+ [2023-02-24 08:11:10,734][796112] Updated weights for policy 0, policy_version 933 (0.0007)
1269
+ [2023-02-24 08:11:12,160][795538] Fps is (10 sec: 15974.6, 60 sec: 15837.9, 300 sec: 15112.8). Total num frames: 3842048. Throughput: 0: 3965.5. Samples: 541452. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
1270
+ [2023-02-24 08:11:12,160][795538] Avg episode reward: [(0, '26.175')]
1271
+ [2023-02-24 08:11:13,377][796112] Updated weights for policy 0, policy_version 943 (0.0007)
1272
+ [2023-02-24 08:11:15,931][796112] Updated weights for policy 0, policy_version 953 (0.0007)
1273
+ [2023-02-24 08:11:17,160][795538] Fps is (10 sec: 15974.4, 60 sec: 15837.9, 300 sec: 15127.9). Total num frames: 3919872. Throughput: 0: 3960.2. Samples: 564990. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
1274
+ [2023-02-24 08:11:17,161][795538] Avg episode reward: [(0, '26.638')]
1275
+ [2023-02-24 08:11:18,529][796112] Updated weights for policy 0, policy_version 963 (0.0008)
1276
+ [2023-02-24 08:11:21,078][796112] Updated weights for policy 0, policy_version 973 (0.0007)
1277
+ [2023-02-24 08:11:22,160][795538] Fps is (10 sec: 15974.3, 60 sec: 15906.1, 300 sec: 15168.4). Total num frames: 4001792. Throughput: 0: 3964.5. Samples: 588920. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
1278
+ [2023-02-24 08:11:22,161][795538] Avg episode reward: [(0, '26.420')]
1279
+ [2023-02-24 08:11:23,650][796112] Updated weights for policy 0, policy_version 983 (0.0006)
1280
+ [2023-02-24 08:11:26,246][796112] Updated weights for policy 0, policy_version 993 (0.0006)
1281
+ [2023-02-24 08:11:27,160][795538] Fps is (10 sec: 15974.4, 60 sec: 15837.9, 300 sec: 15180.8). Total num frames: 4079616. Throughput: 0: 3963.6. Samples: 600810. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
1282
+ [2023-02-24 08:11:27,161][795538] Avg episode reward: [(0, '23.763')]
1283
+ [2023-02-24 08:11:28,856][796112] Updated weights for policy 0, policy_version 1003 (0.0006)
1284
+ [2023-02-24 08:11:31,443][796112] Updated weights for policy 0, policy_version 1013 (0.0006)
1285
+ [2023-02-24 08:11:32,160][795538] Fps is (10 sec: 15564.8, 60 sec: 15837.9, 300 sec: 15192.4). Total num frames: 4157440. Throughput: 0: 3970.3. Samples: 624536. Policy #0 lag: (min: 0.0, avg: 1.0, max: 2.0)
1286
+ [2023-02-24 08:11:32,161][795538] Avg episode reward: [(0, '29.275')]
1287
+ [2023-02-24 08:11:32,165][796098] Saving new best policy, reward=29.275!
1288
+ [2023-02-24 08:11:34,059][796112] Updated weights for policy 0, policy_version 1023 (0.0007)
1289
+ [2023-02-24 08:11:36,631][796112] Updated weights for policy 0, policy_version 1033 (0.0006)
1290
+ [2023-02-24 08:11:37,160][795538] Fps is (10 sec: 15974.4, 60 sec: 15837.9, 300 sec: 15227.5). Total num frames: 4239360. Throughput: 0: 3966.3. Samples: 648028. Policy #0 lag: (min: 0.0, avg: 0.8, max: 1.0)
1291
+ [2023-02-24 08:11:37,161][795538] Avg episode reward: [(0, '30.081')]
1292
+ [2023-02-24 08:11:37,162][796098] Saving new best policy, reward=30.081!
1293
+ [2023-02-24 08:11:39,264][796112] Updated weights for policy 0, policy_version 1043 (0.0006)
1294
+ [2023-02-24 08:11:41,882][796112] Updated weights for policy 0, policy_version 1053 (0.0008)
1295
+ [2023-02-24 08:11:42,160][795538] Fps is (10 sec: 15974.4, 60 sec: 15837.9, 300 sec: 15237.1). Total num frames: 4317184. Throughput: 0: 3961.7. Samples: 659794. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
1296
+ [2023-02-24 08:11:42,162][795538] Avg episode reward: [(0, '28.237')]
1297
+ [2023-02-24 08:11:44,465][796112] Updated weights for policy 0, policy_version 1063 (0.0007)
1298
+ [2023-02-24 08:11:47,078][796112] Updated weights for policy 0, policy_version 1073 (0.0007)
1299
+ [2023-02-24 08:11:47,160][795538] Fps is (10 sec: 15564.9, 60 sec: 15837.9, 300 sec: 15246.2). Total num frames: 4395008. Throughput: 0: 3964.2. Samples: 683430. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
1300
+ [2023-02-24 08:11:47,160][795538] Avg episode reward: [(0, '27.334')]
1301
+ [2023-02-24 08:11:49,667][796112] Updated weights for policy 0, policy_version 1083 (0.0007)
1302
+ [2023-02-24 08:11:52,160][795538] Fps is (10 sec: 15564.8, 60 sec: 15837.9, 300 sec: 15254.8). Total num frames: 4472832. Throughput: 0: 3957.7. Samples: 707084. Policy #0 lag: (min: 0.0, avg: 1.0, max: 2.0)
1303
+ [2023-02-24 08:11:52,161][795538] Avg episode reward: [(0, '27.060')]
1304
+ [2023-02-24 08:11:52,282][796112] Updated weights for policy 0, policy_version 1093 (0.0006)
1305
+ [2023-02-24 08:11:54,877][796112] Updated weights for policy 0, policy_version 1103 (0.0006)
1306
+ [2023-02-24 08:11:57,160][795538] Fps is (10 sec: 15564.7, 60 sec: 15769.6, 300 sec: 15263.0). Total num frames: 4550656. Throughput: 0: 3941.8. Samples: 718832. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
1307
+ [2023-02-24 08:11:57,161][795538] Avg episode reward: [(0, '26.759')]
1308
+ [2023-02-24 08:11:57,461][796112] Updated weights for policy 0, policy_version 1113 (0.0006)
1309
+ [2023-02-24 08:12:00,051][796112] Updated weights for policy 0, policy_version 1123 (0.0006)
1310
+ [2023-02-24 08:12:02,160][795538] Fps is (10 sec: 15974.5, 60 sec: 15837.9, 300 sec: 15291.7). Total num frames: 4632576. Throughput: 0: 3946.0. Samples: 742562. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
1311
+ [2023-02-24 08:12:02,161][795538] Avg episode reward: [(0, '31.137')]
1312
+ [2023-02-24 08:12:02,164][796098] Saving new best policy, reward=31.137!
1313
+ [2023-02-24 08:12:02,698][796112] Updated weights for policy 0, policy_version 1133 (0.0008)
1314
+ [2023-02-24 08:12:05,265][796112] Updated weights for policy 0, policy_version 1143 (0.0007)
1315
+ [2023-02-24 08:12:07,160][795538] Fps is (10 sec: 15974.4, 60 sec: 15837.9, 300 sec: 15298.6). Total num frames: 4710400. Throughput: 0: 3936.4. Samples: 766056. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
1316
+ [2023-02-24 08:12:07,161][795538] Avg episode reward: [(0, '29.446')]
1317
+ [2023-02-24 08:12:07,854][796112] Updated weights for policy 0, policy_version 1153 (0.0009)
1318
+ [2023-02-24 08:12:10,527][796112] Updated weights for policy 0, policy_version 1163 (0.0008)
1319
+ [2023-02-24 08:12:12,160][795538] Fps is (10 sec: 15564.8, 60 sec: 15769.6, 300 sec: 15305.1). Total num frames: 4788224. Throughput: 0: 3933.4. Samples: 777814. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
1320
+ [2023-02-24 08:12:12,161][795538] Avg episode reward: [(0, '25.534')]
1321
+ [2023-02-24 08:12:13,157][796112] Updated weights for policy 0, policy_version 1173 (0.0008)
1322
+ [2023-02-24 08:12:15,767][796112] Updated weights for policy 0, policy_version 1183 (0.0007)
1323
+ [2023-02-24 08:12:17,160][795538] Fps is (10 sec: 15564.5, 60 sec: 15769.6, 300 sec: 15311.2). Total num frames: 4866048. Throughput: 0: 3927.5. Samples: 801272. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
1324
+ [2023-02-24 08:12:17,161][795538] Avg episode reward: [(0, '28.476')]
1325
+ [2023-02-24 08:12:18,390][796112] Updated weights for policy 0, policy_version 1193 (0.0006)
1326
+ [2023-02-24 08:12:21,010][796112] Updated weights for policy 0, policy_version 1203 (0.0008)
1327
+ [2023-02-24 08:12:22,161][795538] Fps is (10 sec: 15563.3, 60 sec: 15701.1, 300 sec: 15317.1). Total num frames: 4943872. Throughput: 0: 3926.3. Samples: 824714. Policy #0 lag: (min: 0.0, avg: 1.0, max: 2.0)
1328
+ [2023-02-24 08:12:22,162][795538] Avg episode reward: [(0, '29.026')]
1329
+ [2023-02-24 08:12:23,640][796112] Updated weights for policy 0, policy_version 1213 (0.0007)
1330
+ [2023-02-24 08:12:26,277][796112] Updated weights for policy 0, policy_version 1223 (0.0006)
1331
+ [2023-02-24 08:12:27,160][795538] Fps is (10 sec: 15565.1, 60 sec: 15701.3, 300 sec: 15322.8). Total num frames: 5021696. Throughput: 0: 3925.6. Samples: 836444. Policy #0 lag: (min: 0.0, avg: 1.0, max: 2.0)
1332
+ [2023-02-24 08:12:27,161][795538] Avg episode reward: [(0, '28.968')]
1333
+ [2023-02-24 08:12:28,839][796112] Updated weights for policy 0, policy_version 1233 (0.0008)
1334
+ [2023-02-24 08:12:31,424][796112] Updated weights for policy 0, policy_version 1243 (0.0009)
1335
+ [2023-02-24 08:12:32,160][795538] Fps is (10 sec: 15566.2, 60 sec: 15701.3, 300 sec: 15328.1). Total num frames: 5099520. Throughput: 0: 3926.8. Samples: 860134. Policy #0 lag: (min: 0.0, avg: 1.0, max: 2.0)
1336
+ [2023-02-24 08:12:32,161][795538] Avg episode reward: [(0, '30.627')]
1337
+ [2023-02-24 08:12:34,002][796112] Updated weights for policy 0, policy_version 1253 (0.0006)
1338
+ [2023-02-24 08:12:36,598][796112] Updated weights for policy 0, policy_version 1263 (0.0007)
1339
+ [2023-02-24 08:12:37,160][795538] Fps is (10 sec: 15974.5, 60 sec: 15701.3, 300 sec: 15351.1). Total num frames: 5181440. Throughput: 0: 3927.4. Samples: 883818. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
1340
+ [2023-02-24 08:12:37,160][795538] Avg episode reward: [(0, '30.119')]
1341
+ [2023-02-24 08:12:39,183][796112] Updated weights for policy 0, policy_version 1273 (0.0006)
1342
+ [2023-02-24 08:12:41,827][796112] Updated weights for policy 0, policy_version 1283 (0.0006)
1343
+ [2023-02-24 08:12:42,160][795538] Fps is (10 sec: 15974.3, 60 sec: 15701.3, 300 sec: 15355.6). Total num frames: 5259264. Throughput: 0: 3932.7. Samples: 895804. Policy #0 lag: (min: 0.0, avg: 1.0, max: 2.0)
1344
+ [2023-02-24 08:12:42,161][795538] Avg episode reward: [(0, '28.016')]
1345
+ [2023-02-24 08:12:42,165][796098] Saving /mnt/chqma/data-ssd-01/dataset/oss/RWKV-LM/deep-rl-class/notebooks/unit8/train_dir/default_experiment/checkpoint_p0/checkpoint_000001284_5259264.pth...
1346
+ [2023-02-24 08:12:42,261][796098] Removing /mnt/chqma/data-ssd-01/dataset/oss/RWKV-LM/deep-rl-class/notebooks/unit8/train_dir/default_experiment/checkpoint_p0/checkpoint_000000403_1650688.pth
1347
+ [2023-02-24 08:12:44,477][796112] Updated weights for policy 0, policy_version 1293 (0.0006)
1348
+ [2023-02-24 08:12:47,112][796112] Updated weights for policy 0, policy_version 1303 (0.0007)
1349
+ [2023-02-24 08:12:47,160][795538] Fps is (10 sec: 15564.7, 60 sec: 15701.3, 300 sec: 15360.0). Total num frames: 5337088. Throughput: 0: 3918.7. Samples: 918904. Policy #0 lag: (min: 0.0, avg: 1.0, max: 2.0)
1350
+ [2023-02-24 08:12:47,161][795538] Avg episode reward: [(0, '29.296')]
1351
+ [2023-02-24 08:12:49,686][796112] Updated weights for policy 0, policy_version 1313 (0.0006)
1352
+ [2023-02-24 08:12:52,160][795538] Fps is (10 sec: 15564.8, 60 sec: 15701.3, 300 sec: 15364.2). Total num frames: 5414912. Throughput: 0: 3658.7. Samples: 930696. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
1353
+ [2023-02-24 08:12:52,161][795538] Avg episode reward: [(0, '29.969')]
1354
+ [2023-02-24 08:12:52,236][796112] Updated weights for policy 0, policy_version 1323 (0.0007)
1355
+ [2023-02-24 08:12:54,849][796112] Updated weights for policy 0, policy_version 1333 (0.0006)
1356
+ [2023-02-24 08:12:57,160][795538] Fps is (10 sec: 15564.9, 60 sec: 15701.3, 300 sec: 15368.2). Total num frames: 5492736. Throughput: 0: 3924.4. Samples: 954414. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
1357
+ [2023-02-24 08:12:57,160][795538] Avg episode reward: [(0, '26.997')]
1358
+ [2023-02-24 08:12:57,451][796112] Updated weights for policy 0, policy_version 1343 (0.0007)
1359
+ [2023-02-24 08:13:00,062][796112] Updated weights for policy 0, policy_version 1353 (0.0007)
1360
+ [2023-02-24 08:13:02,127][795538] Keyboard interrupt detected in the event loop EvtLoop [Runner_EvtLoop, process=main process 795538], exiting...
1361
+ [2023-02-24 08:13:02,128][796098] Stopping Batcher_0...
1362
+ [2023-02-24 08:13:02,129][796098] Loop batcher_evt_loop terminating...
1363
+ [2023-02-24 08:13:02,130][796098] Saving /mnt/chqma/data-ssd-01/dataset/oss/RWKV-LM/deep-rl-class/notebooks/unit8/train_dir/default_experiment/checkpoint_p0/checkpoint_000001361_5574656.pth...
1364
+ [2023-02-24 08:13:02,130][795538] Runner profile tree view:
1365
+ main_loop: 258.8521
1366
+ [2023-02-24 08:13:02,130][795538] Collected {0: 5574656}, FPS: 15159.1
1367
+ [2023-02-24 08:13:02,136][796113] Stopping RolloutWorker_w2...
1368
+ [2023-02-24 08:13:02,137][796113] Loop rollout_proc2_evt_loop terminating...
1369
+ [2023-02-24 08:13:02,139][796118] Stopping RolloutWorker_w4...
1370
+ [2023-02-24 08:13:02,139][796118] Loop rollout_proc4_evt_loop terminating...
1371
+ [2023-02-24 08:13:02,139][796117] Stopping RolloutWorker_w5...
1372
+ [2023-02-24 08:13:02,140][796117] Loop rollout_proc5_evt_loop terminating...
1373
+ [2023-02-24 08:13:02,142][796115] Stopping RolloutWorker_w3...
1374
+ [2023-02-24 08:13:02,143][796115] Loop rollout_proc3_evt_loop terminating...
1375
+ [2023-02-24 08:13:02,143][796111] Stopping RolloutWorker_w0...
1376
+ [2023-02-24 08:13:02,144][796119] Stopping RolloutWorker_w6...
1377
+ [2023-02-24 08:13:02,144][796111] Loop rollout_proc0_evt_loop terminating...
1378
+ [2023-02-24 08:13:02,144][796119] Loop rollout_proc6_evt_loop terminating...
1379
+ [2023-02-24 08:13:02,148][796114] Stopping RolloutWorker_w1...
1380
+ [2023-02-24 08:13:02,148][796114] Loop rollout_proc1_evt_loop terminating...
1381
+ [2023-02-24 08:13:02,151][796116] Stopping RolloutWorker_w7...
1382
+ [2023-02-24 08:13:02,152][796116] Loop rollout_proc7_evt_loop terminating...
1383
+ [2023-02-24 08:13:02,163][796112] Weights refcount: 2 0
1384
+ [2023-02-24 08:13:02,171][796112] Stopping InferenceWorker_p0-w0...
1385
+ [2023-02-24 08:13:02,172][796112] Loop inference_proc0-0_evt_loop terminating...
1386
+ [2023-02-24 08:13:02,301][796098] Removing /mnt/chqma/data-ssd-01/dataset/oss/RWKV-LM/deep-rl-class/notebooks/unit8/train_dir/default_experiment/checkpoint_p0/checkpoint_000000822_3366912.pth
1387
+ [2023-02-24 08:13:02,305][796098] Stopping LearnerWorker_p0...
1388
+ [2023-02-24 08:13:02,314][796098] Loop learner_proc0_evt_loop terminating...
1389
+ [2023-02-24 08:13:11,768][795538] Loading existing experiment configuration from /mnt/chqma/data-ssd-01/dataset/oss/RWKV-LM/deep-rl-class/notebooks/unit8/train_dir/default_experiment/config.json
1390
+ [2023-02-24 08:13:11,769][795538] Overriding arg 'num_workers' with value 1 passed from command line
1391
+ [2023-02-24 08:13:11,770][795538] Adding new argument 'no_render'=True that is not in the saved config file!
1392
+ [2023-02-24 08:13:11,770][795538] Adding new argument 'save_video'=True that is not in the saved config file!
1393
+ [2023-02-24 08:13:11,770][795538] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
1394
+ [2023-02-24 08:13:11,771][795538] Adding new argument 'video_name'=None that is not in the saved config file!
1395
+ [2023-02-24 08:13:11,771][795538] Adding new argument 'max_num_frames'=100000 that is not in the saved config file!
1396
+ [2023-02-24 08:13:11,772][795538] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
1397
+ [2023-02-24 08:13:11,772][795538] Adding new argument 'push_to_hub'=True that is not in the saved config file!
1398
+ [2023-02-24 08:13:11,773][795538] Adding new argument 'hf_repository'='chqmatteo/rl_course_vizdoom_health_gathering_supreme' that is not in the saved config file!
1399
+ [2023-02-24 08:13:11,773][795538] Adding new argument 'policy_index'=0 that is not in the saved config file!
1400
+ [2023-02-24 08:13:11,773][795538] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
1401
+ [2023-02-24 08:13:11,774][795538] Adding new argument 'train_script'=None that is not in the saved config file!
1402
+ [2023-02-24 08:13:11,774][795538] Adding new argument 'enjoy_script'=None that is not in the saved config file!
1403
+ [2023-02-24 08:13:11,775][795538] Using frameskip 1 and render_action_repeat=4 for evaluation
1404
+ [2023-02-24 08:13:11,779][795538] RunningMeanStd input shape: (3, 72, 128)
1405
+ [2023-02-24 08:13:11,780][795538] RunningMeanStd input shape: (1,)
1406
+ [2023-02-24 08:13:11,787][795538] ConvEncoder: input_channels=3
1407
+ [2023-02-24 08:13:11,812][795538] Conv encoder output size: 512
1408
+ [2023-02-24 08:13:11,813][795538] Policy head output size: 512
1409
+ [2023-02-24 08:13:11,845][795538] Loading state from checkpoint /mnt/chqma/data-ssd-01/dataset/oss/RWKV-LM/deep-rl-class/notebooks/unit8/train_dir/default_experiment/checkpoint_p0/checkpoint_000001361_5574656.pth...
1410
+ [2023-02-24 08:13:12,294][795538] Num frames 100...
1411
+ [2023-02-24 08:13:12,360][795538] Num frames 200...
1412
+ [2023-02-24 08:13:12,438][795538] Num frames 300...
1413
+ [2023-02-24 08:13:12,502][795538] Num frames 400...
1414
+ [2023-02-24 08:13:12,568][795538] Num frames 500...
1415
+ [2023-02-24 08:13:12,635][795538] Num frames 600...
1416
+ [2023-02-24 08:13:12,701][795538] Num frames 700...
1417
+ [2023-02-24 08:13:12,763][795538] Num frames 800...
1418
+ [2023-02-24 08:13:12,833][795538] Num frames 900...
1419
+ [2023-02-24 08:13:12,896][795538] Num frames 1000...
1420
+ [2023-02-24 08:13:12,971][795538] Num frames 1100...
1421
+ [2023-02-24 08:13:13,037][795538] Num frames 1200...
1422
+ [2023-02-24 08:13:13,102][795538] Avg episode rewards: #0: 29.160, true rewards: #0: 12.160
1423
+ [2023-02-24 08:13:13,102][795538] Avg episode reward: 29.160, avg true_objective: 12.160
1424
+ [2023-02-24 08:13:13,165][795538] Num frames 1300...
1425
+ [2023-02-24 08:13:13,228][795538] Num frames 1400...
1426
+ [2023-02-24 08:13:13,291][795538] Num frames 1500...
1427
+ [2023-02-24 08:13:13,362][795538] Num frames 1600...
1428
+ [2023-02-24 08:13:13,429][795538] Num frames 1700...
1429
+ [2023-02-24 08:13:13,494][795538] Num frames 1800...
1430
+ [2023-02-24 08:13:13,563][795538] Num frames 1900...
1431
+ [2023-02-24 08:13:13,627][795538] Num frames 2000...
1432
+ [2023-02-24 08:13:13,697][795538] Num frames 2100...
1433
+ [2023-02-24 08:13:13,770][795538] Num frames 2200...
1434
+ [2023-02-24 08:13:13,838][795538] Num frames 2300...
1435
+ [2023-02-24 08:13:13,919][795538] Num frames 2400...
1436
+ [2023-02-24 08:13:13,989][795538] Num frames 2500...
1437
+ [2023-02-24 08:13:14,053][795538] Num frames 2600...
1438
+ [2023-02-24 08:13:14,132][795538] Num frames 2700...
1439
+ [2023-02-24 08:13:14,205][795538] Num frames 2800...
1440
+ [2023-02-24 08:13:14,265][795538] Avg episode rewards: #0: 35.535, true rewards: #0: 14.035
1441
+ [2023-02-24 08:13:14,266][795538] Avg episode reward: 35.535, avg true_objective: 14.035
1442
+ [2023-02-24 08:13:14,332][795538] Num frames 2900...
1443
+ [2023-02-24 08:13:14,399][795538] Num frames 3000...
1444
+ [2023-02-24 08:13:14,464][795538] Num frames 3100...
1445
+ [2023-02-24 08:13:14,537][795538] Num frames 3200...
1446
+ [2023-02-24 08:13:14,627][795538] Num frames 3300...
1447
+ [2023-02-24 08:13:14,696][795538] Num frames 3400...
1448
+ [2023-02-24 08:13:14,807][795538] Avg episode rewards: #0: 28.950, true rewards: #0: 11.617
1449
+ [2023-02-24 08:13:14,808][795538] Avg episode reward: 28.950, avg true_objective: 11.617
1450
+ [2023-02-24 08:13:14,818][795538] Num frames 3500...
1451
+ [2023-02-24 08:13:14,882][795538] Num frames 3600...
1452
+ [2023-02-24 08:13:14,943][795538] Num frames 3700...
1453
+ [2023-02-24 08:13:15,002][795538] Num frames 3800...
1454
+ [2023-02-24 08:13:15,069][795538] Num frames 3900...
1455
+ [2023-02-24 08:13:15,133][795538] Num frames 4000...
1456
+ [2023-02-24 08:13:15,196][795538] Num frames 4100...
1457
+ [2023-02-24 08:13:15,259][795538] Num frames 4200...
1458
+ [2023-02-24 08:13:15,327][795538] Num frames 4300...
1459
+ [2023-02-24 08:13:15,403][795538] Num frames 4400...
1460
+ [2023-02-24 08:13:15,470][795538] Num frames 4500...
1461
+ [2023-02-24 08:13:15,534][795538] Num frames 4600...
1462
+ [2023-02-24 08:13:15,596][795538] Num frames 4700...
1463
+ [2023-02-24 08:13:15,660][795538] Num frames 4800...
1464
+ [2023-02-24 08:13:15,736][795538] Num frames 4900...
1465
+ [2023-02-24 08:13:15,804][795538] Num frames 5000...
1466
+ [2023-02-24 08:13:15,870][795538] Num frames 5100...
1467
+ [2023-02-24 08:13:15,944][795538] Num frames 5200...
1468
+ [2023-02-24 08:13:16,023][795538] Num frames 5300...
1469
+ [2023-02-24 08:13:16,098][795538] Num frames 5400...
1470
+ [2023-02-24 08:13:16,186][795538] Num frames 5500...
1471
+ [2023-02-24 08:13:16,306][795538] Avg episode rewards: #0: 35.962, true rewards: #0: 13.962
1472
+ [2023-02-24 08:13:16,307][795538] Avg episode reward: 35.962, avg true_objective: 13.962
1473
+ [2023-02-24 08:13:16,320][795538] Num frames 5600...
1474
+ [2023-02-24 08:13:16,393][795538] Num frames 5700...
1475
+ [2023-02-24 08:13:16,460][795538] Num frames 5800...
1476
+ [2023-02-24 08:13:16,524][795538] Num frames 5900...
1477
+ [2023-02-24 08:13:16,601][795538] Avg episode rewards: #0: 30.080, true rewards: #0: 11.880
1478
+ [2023-02-24 08:13:16,602][795538] Avg episode reward: 30.080, avg true_objective: 11.880
1479
+ [2023-02-24 08:13:16,640][795538] Num frames 6000...
1480
+ [2023-02-24 08:13:16,708][795538] Num frames 6100...
1481
+ [2023-02-24 08:13:16,794][795538] Num frames 6200...
1482
+ [2023-02-24 08:13:16,854][795538] Num frames 6300...
1483
+ [2023-02-24 08:13:16,920][795538] Num frames 6400...
1484
+ [2023-02-24 08:13:16,995][795538] Num frames 6500...
1485
+ [2023-02-24 08:13:17,060][795538] Num frames 6600...
1486
+ [2023-02-24 08:13:17,136][795538] Num frames 6700...
1487
+ [2023-02-24 08:13:17,202][795538] Num frames 6800...
1488
+ [2023-02-24 08:13:17,265][795538] Num frames 6900...
1489
+ [2023-02-24 08:13:17,334][795538] Num frames 7000...
1490
+ [2023-02-24 08:13:17,402][795538] Num frames 7100...
1491
+ [2023-02-24 08:13:17,467][795538] Num frames 7200...
1492
+ [2023-02-24 08:13:17,541][795538] Num frames 7300...
1493
+ [2023-02-24 08:13:17,614][795538] Num frames 7400...
1494
+ [2023-02-24 08:13:17,693][795538] Num frames 7500...
1495
+ [2023-02-24 08:13:17,761][795538] Num frames 7600...
1496
+ [2023-02-24 08:13:17,852][795538] Avg episode rewards: #0: 32.753, true rewards: #0: 12.753
1497
+ [2023-02-24 08:13:17,853][795538] Avg episode reward: 32.753, avg true_objective: 12.753
1498
+ [2023-02-24 08:13:17,891][795538] Num frames 7700...
1499
+ [2023-02-24 08:13:17,954][795538] Num frames 7800...
1500
+ [2023-02-24 08:13:18,026][795538] Num frames 7900...
1501
+ [2023-02-24 08:13:18,113][795538] Num frames 8000...
1502
+ [2023-02-24 08:13:18,178][795538] Num frames 8100...
1503
+ [2023-02-24 08:13:18,244][795538] Num frames 8200...
1504
+ [2023-02-24 08:13:18,314][795538] Num frames 8300...
1505
+ [2023-02-24 08:13:18,380][795538] Num frames 8400...
1506
+ [2023-02-24 08:13:18,452][795538] Num frames 8500...
1507
+ [2023-02-24 08:13:18,528][795538] Num frames 8600...
1508
+ [2023-02-24 08:13:18,601][795538] Num frames 8700...
1509
+ [2023-02-24 08:13:18,664][795538] Num frames 8800...
1510
+ [2023-02-24 08:13:18,732][795538] Num frames 8900...
1511
+ [2023-02-24 08:13:18,799][795538] Num frames 9000...
1512
+ [2023-02-24 08:13:18,876][795538] Num frames 9100...
1513
+ [2023-02-24 08:13:18,945][795538] Num frames 9200...
1514
+ [2023-02-24 08:13:19,017][795538] Num frames 9300...
1515
+ [2023-02-24 08:13:19,083][795538] Num frames 9400...
1516
+ [2023-02-24 08:13:19,162][795538] Num frames 9500...
1517
+ [2023-02-24 08:13:19,240][795538] Num frames 9600...
1518
+ [2023-02-24 08:13:19,308][795538] Num frames 9700...
1519
+ [2023-02-24 08:13:19,398][795538] Avg episode rewards: #0: 36.788, true rewards: #0: 13.931
1520
+ [2023-02-24 08:13:19,398][795538] Avg episode reward: 36.788, avg true_objective: 13.931
1521
+ [2023-02-24 08:13:19,431][795538] Num frames 9800...
1522
+ [2023-02-24 08:13:19,505][795538] Num frames 9900...
1523
+ [2023-02-24 08:13:19,570][795538] Num frames 10000...
1524
+ [2023-02-24 08:13:19,642][795538] Num frames 10100...
1525
+ [2023-02-24 08:13:19,704][795538] Num frames 10200...
1526
+ [2023-02-24 08:13:19,778][795538] Avg episode rewards: #0: 33.665, true rewards: #0: 12.790
1527
+ [2023-02-24 08:13:19,779][795538] Avg episode reward: 33.665, avg true_objective: 12.790
1528
+ [2023-02-24 08:13:19,831][795538] Num frames 10300...
1529
+ [2023-02-24 08:13:19,906][795538] Num frames 10400...
1530
+ [2023-02-24 08:13:20,011][795538] Num frames 10500...
1531
+ [2023-02-24 08:13:20,081][795538] Num frames 10600...
1532
+ [2023-02-24 08:13:20,144][795538] Num frames 10700...
1533
+ [2023-02-24 08:13:20,220][795538] Num frames 10800...
1534
+ [2023-02-24 08:13:20,322][795538] Avg episode rewards: #0: 31.302, true rewards: #0: 12.080
1535
+ [2023-02-24 08:13:20,322][795538] Avg episode reward: 31.302, avg true_objective: 12.080
1536
+ [2023-02-24 08:13:20,348][795538] Num frames 10900...
1537
+ [2023-02-24 08:13:20,415][795538] Num frames 11000...
1538
+ [2023-02-24 08:13:20,477][795538] Num frames 11100...
1539
+ [2023-02-24 08:13:20,537][795538] Num frames 11200...
1540
+ [2023-02-24 08:13:20,596][795538] Num frames 11300...
1541
+ [2023-02-24 08:13:20,656][795538] Num frames 11400...
1542
+ [2023-02-24 08:13:20,717][795538] Num frames 11500...
1543
+ [2023-02-24 08:13:20,774][795538] Num frames 11600...
1544
+ [2023-02-24 08:13:20,836][795538] Num frames 11700...
1545
+ [2023-02-24 08:13:20,897][795538] Num frames 11800...
1546
+ [2023-02-24 08:13:20,958][795538] Num frames 11900...
1547
+ [2023-02-24 08:13:21,028][795538] Num frames 12000...
1548
+ [2023-02-24 08:13:21,097][795538] Num frames 12100...
1549
+ [2023-02-24 08:13:21,160][795538] Num frames 12200...
1550
+ [2023-02-24 08:13:21,224][795538] Num frames 12300...
1551
+ [2023-02-24 08:13:21,292][795538] Num frames 12400...
1552
+ [2023-02-24 08:13:21,394][795538] Avg episode rewards: #0: 32.272, true rewards: #0: 12.472
1553
+ [2023-02-24 08:13:21,395][795538] Avg episode reward: 32.272, avg true_objective: 12.472
1554
+ [2023-02-24 08:13:27,245][795538] Replay video saved to /mnt/chqma/data-ssd-01/dataset/oss/RWKV-LM/deep-rl-class/notebooks/unit8/train_dir/default_experiment/replay.mp4!