updates model trained 5 epochs, 0.96 acc
Browse files- model.onnx +1 -1
- model.safetensors +1 -1
- train.py +5 -6
- training_args.bin +1 -1
model.onnx
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 33762565
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dbfd1293e47384cc215f3cbf0a611548589b91d5fd5e8838a03fdd485bd7151b
|
3 |
size 33762565
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 34099540
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2321555c8dae044f37b02055a11673543a7742910c760396e3813b4eba13e4cf
|
3 |
size 34099540
|
train.py
CHANGED
@@ -5,7 +5,7 @@ from transformers import EfficientNetImageProcessor, EfficientNetForImageClassif
|
|
5 |
import numpy as np
|
6 |
|
7 |
print("Cuda availability:", torch.cuda.is_available())
|
8 |
-
cuda = torch.device('cuda')
|
9 |
print("cuda: ", torch.cuda.get_device_name(device=cuda))
|
10 |
|
11 |
dataset = load_dataset("chriamue/bird-species-dataset")
|
@@ -30,9 +30,9 @@ training_args = TrainingArguments(
|
|
30 |
evaluation_strategy="epoch",
|
31 |
save_strategy="epoch",
|
32 |
learning_rate=5e-5,
|
33 |
-
per_device_train_batch_size=
|
34 |
per_device_eval_batch_size=16,
|
35 |
-
num_train_epochs=
|
36 |
weight_decay=0.01,
|
37 |
load_best_model_at_end=True,
|
38 |
metric_for_best_model="accuracy"
|
@@ -53,10 +53,9 @@ def transforms(examples):
|
|
53 |
examples["pixel_values"] = pixel_values
|
54 |
return examples
|
55 |
|
56 |
-
|
57 |
image = dataset["train"][0]["image"]
|
58 |
|
59 |
-
dataset["train"] = dataset["train"].shuffle(seed=42).select(range(1500))
|
60 |
# dataset["validation"] = dataset["validation"].select(range(100))
|
61 |
# dataset["test"] = dataset["test"].select(range(100))
|
62 |
|
@@ -70,7 +69,7 @@ trainer = Trainer(
|
|
70 |
compute_metrics=compute_metrics,
|
71 |
)
|
72 |
|
73 |
-
train_results = trainer.train(resume_from_checkpoint=
|
74 |
|
75 |
print(trainer.evaluate())
|
76 |
|
|
|
5 |
import numpy as np
|
6 |
|
7 |
print("Cuda availability:", torch.cuda.is_available())
|
8 |
+
cuda = torch.device('cuda')
|
9 |
print("cuda: ", torch.cuda.get_device_name(device=cuda))
|
10 |
|
11 |
dataset = load_dataset("chriamue/bird-species-dataset")
|
|
|
30 |
evaluation_strategy="epoch",
|
31 |
save_strategy="epoch",
|
32 |
learning_rate=5e-5,
|
33 |
+
per_device_train_batch_size=16,
|
34 |
per_device_eval_batch_size=16,
|
35 |
+
num_train_epochs=6,
|
36 |
weight_decay=0.01,
|
37 |
load_best_model_at_end=True,
|
38 |
metric_for_best_model="accuracy"
|
|
|
53 |
examples["pixel_values"] = pixel_values
|
54 |
return examples
|
55 |
|
|
|
56 |
image = dataset["train"][0]["image"]
|
57 |
|
58 |
+
# dataset["train"] = dataset["train"].shuffle(seed=42).select(range(1500))
|
59 |
# dataset["validation"] = dataset["validation"].select(range(100))
|
60 |
# dataset["test"] = dataset["test"].select(range(100))
|
61 |
|
|
|
69 |
compute_metrics=compute_metrics,
|
70 |
)
|
71 |
|
72 |
+
train_results = trainer.train(resume_from_checkpoint=False)
|
73 |
|
74 |
print(trainer.evaluate())
|
75 |
|
training_args.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 4600
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:817083c686e9f03595b3ef0af83f3f8fdd1a6b49d286980b33af2e23a0e330d8
|
3 |
size 4600
|