chribark's picture
Training in progress epoch 9
ed24622
metadata
license: other
base_model: nvidia/segformer-b3-finetuned-ade-512-512
tags:
  - generated_from_keras_callback
model-index:
  - name: chribark/segformer-b3-finetuned-ade-512-512-finetuned-UAVid
    results: []

chribark/segformer-b3-finetuned-ade-512-512-finetuned-UAVid

This model is a fine-tuned version of nvidia/segformer-b3-finetuned-ade-512-512 on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.3207
  • Validation Loss: 0.3852
  • Validation Mean Iou: 0.0093
  • Validation Mean Accuracy: 0.0378
  • Validation Overall Accuracy: 0.0336
  • Validation Accuracy Clutter: 0.0293
  • Validation Accuracy Building: 0.0228
  • Validation Accuracy Road: 0.0896
  • Validation Accuracy Static Car: 0.0006
  • Validation Accuracy Tree: 0.1118
  • Validation Accuracy Vegetation: 0.0103
  • Validation Accuracy Human: 0.0
  • Validation Accuracy Moving Car: nan
  • Validation Iou Clutter: 0.0199
  • Validation Iou Building: 0.0037
  • Validation Iou Road: 0.0072
  • Validation Iou Static Car: 0.0006
  • Validation Iou Tree: 0.0427
  • Validation Iou Vegetation: 0.0000
  • Validation Iou Human: 0.0
  • Validation Iou Moving Car: 0.0
  • Epoch: 9

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 6e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Validation Loss Validation Mean Iou Validation Mean Accuracy Validation Overall Accuracy Validation Accuracy Clutter Validation Accuracy Building Validation Accuracy Road Validation Accuracy Static Car Validation Accuracy Tree Validation Accuracy Vegetation Validation Accuracy Human Validation Accuracy Moving Car Validation Iou Clutter Validation Iou Building Validation Iou Road Validation Iou Static Car Validation Iou Tree Validation Iou Vegetation Validation Iou Human Validation Iou Moving Car Epoch
1.2150 0.6691 0.0149 0.0576 0.0526 0.0355 0.0698 0.1084 0.0000 0.1892 0.0 0.0 nan 0.0241 0.0108 0.0100 0.0000 0.0739 0.0 0.0 0.0 0
0.6829 0.5768 0.0213 0.0817 0.0809 0.0750 0.0083 0.2008 0.0 0.2878 0.0 0.0 nan 0.0501 0.0014 0.0151 0.0 0.1035 0.0 0.0 0.0 1
0.5679 0.4969 0.0151 0.0710 0.0516 0.0295 0.0240 0.2164 0.0000 0.2230 0.0041 0.0 nan 0.0206 0.0039 0.0151 0.0000 0.0814 0.0000 0.0 0.0 2
0.5010 0.4654 0.0135 0.0553 0.0499 0.0437 0.0160 0.1503 0.0000 0.1773 0.0 0.0 nan 0.0301 0.0026 0.0096 0.0000 0.0660 0.0 0.0 0.0 3
0.4501 0.4507 0.0107 0.0504 0.0370 0.0343 0.0176 0.1737 0.0001 0.1191 0.0082 0.0 nan 0.0228 0.0028 0.0130 0.0001 0.0469 0.0000 0.0 0.0 4
0.4229 0.4257 0.0116 0.0436 0.0445 0.0515 0.0120 0.1162 0.0002 0.1222 0.0031 0.0 nan 0.0344 0.0020 0.0087 0.0002 0.0471 0.0000 0.0 0.0 5
0.3823 0.4131 0.0127 0.0504 0.0455 0.0374 0.0124 0.1251 0.0004 0.1705 0.0072 0.0 nan 0.0251 0.0020 0.0098 0.0004 0.0639 0.0000 0.0 0.0 6
0.3610 0.4006 0.0121 0.0518 0.0421 0.0300 0.0162 0.1272 0.0004 0.1675 0.0215 0.0 nan 0.0207 0.0026 0.0096 0.0004 0.0631 0.0001 0.0 0.0 7
0.3428 0.3923 0.0119 0.0465 0.0430 0.0327 0.0166 0.0977 0.0003 0.1670 0.0113 0.0 nan 0.0223 0.0027 0.0078 0.0003 0.0617 0.0000 0.0 0.0 8
0.3207 0.3852 0.0093 0.0378 0.0336 0.0293 0.0228 0.0896 0.0006 0.1118 0.0103 0.0 nan 0.0199 0.0037 0.0072 0.0006 0.0427 0.0000 0.0 0.0 9

Framework versions

  • Transformers 4.40.2
  • TensorFlow 2.15.0
  • Datasets 2.19.1
  • Tokenizers 0.19.1