Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 164.94 +/- 74.94
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc944771560>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc9447715f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc944771680>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc944771710>", "_build": "<function ActorCriticPolicy._build at 0x7fc9447717a0>", "forward": "<function ActorCriticPolicy.forward at 0x7fc944771830>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc9447718c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc944771950>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc9447719e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc944771a70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc944771b00>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fc9447b6b40>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651707651.6599348, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABp7EL2PGmu6Wq/WO/mPRjhx2J078LBkNgAAgD8AAIA/wFiiPT8SvT5jYHG9aw8Svu9AOzuyBca8AAAAAAAAAAAAv1+9KSx4uk4PcjvLrCU5XGYiu1OhjLoAAIA/AACAP4Jnor4oVcq8qLBwu5CfQTkDNhM+KqbAOQAAgD8AAIA/TfZDvr19DTzCWZ25/2MXueVumr3gstU4AACAPwAAgD9Ggga+SGPwui0FQDxEs5K86LeNO3WFfz0AAIA/AAAAAAVbqL6iRGw/CiqIvqcGlr7+1Me+4TiqvQAAAAAAAAAA5nkHPT1SDruQzto7Zw+YOt3kWTwPfqS7AACAPwAAgD/aNNq9bbSBP2Cf/DwL262+1hC0vSDmoT0AAAAAAAAAAHNq4D1cK3q6JW56u0+QkDhQzOw5qmxmOQAAAAAAAIA/MwQtPgpPWjyb+FG8PSCwurPv4j1Krqq7AACAPwAAgD+m3k2+OCGWuz5r87pqUiy4rS8JPS6uDDoAAIA/AACAPzMJm7yYzmw/I/DpvWolmL44Ab077kIMvgAAAAAAAAAAAGZXPPYoOLb5G4667Rsttt/0rDvU3q05AACAPwAAgD/N2lU8ZGJyPr4Nsz0pSTi+fYCUO4Pd4z0AAAAAAAAAAJPvjL5SbOy7JB4SvWYRU72S6Qo9Sr4+PgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMImE9WDFehQ0CUhpRSlIwBbJRN6AOMAXSUR0CBAZnbqQiidX2UKGgGaAloD0MIv7UTJSHxB8CUhpRSlGgVTSYBaBZHQIEDVR+BpYd1fZQoaAZoCWgPQwjv/nivWgU3QJSGlFKUaBVN6ANoFkdAgREIGyHEdnV9lChoBmgJaA9DCBqjdVQ1UFVAlIaUUpRoFU3oA2gWR0CBGPVlPJq7dX2UKGgGaAloD0MIE30+yoi7HMCUhpRSlGgVTSgBaBZHQIEhZFVktmN1fZQoaAZoCWgPQwiuKCUEq15WQJSGlFKUaBVN6ANoFkdAgTf0JF9a2XV9lChoBmgJaA9DCFWgFoOHsVBAlIaUUpRoFU3oA2gWR0CBRhcD8tPIdX2UKGgGaAloD0MIy4Rf6ufmWkCUhpRSlGgVTegDaBZHQIFLUiQkond1fZQoaAZoCWgPQwjlRpG1hqRMQJSGlFKUaBVN6ANoFkdAgU2YWk8A73V9lChoBmgJaA9DCCo6kst/Vl9AlIaUUpRoFU3oA2gWR0CBTu9ugpSadX2UKGgGaAloD0MIdQZGXtbKQMCUhpRSlGgVTQYBaBZHQIGcmFQEZBN1fZQoaAZoCWgPQwg5K6Im+odeQJSGlFKUaBVN6ANoFkdAgazFGG21D3V9lChoBmgJaA9DCPaYSGk2+1BAlIaUUpRoFU3oA2gWR0CBsT/BnBcidX2UKGgGaAloD0MI4fHtXYMTU0CUhpRSlGgVTegDaBZHQIHGFTYNAkd1fZQoaAZoCWgPQwja4a/JGsFZQJSGlFKUaBVN6ANoFkdAgdc+CkGiYnV9lChoBmgJaA9DCFiqC3iZllVAlIaUUpRoFU3oA2gWR0CB3NsImgJ1dX2UKGgGaAloD0MIxF+TNWoUYECUhpRSlGgVTegDaBZHQIHlyA2AG0N1fZQoaAZoCWgPQwgy422l10BeQJSGlFKUaBVN6ANoFkdAge0rJbMX8HV9lChoBmgJaA9DCIi+u5UlNktAlIaUUpRoFU3oA2gWR0CB7wwBYFJQdX2UKGgGaAloD0MIDmWoiiklYkCUhpRSlGgVTegDaBZHQIH8yGgzxgB1fZQoaAZoCWgPQwjb+BOVDU1aQJSGlFKUaBVN6ANoFkdAggTYtHxz73V9lChoBmgJaA9DCEksKXcfu2FAlIaUUpRoFU3oA2gWR0CCDOpLEk0KdX2UKGgGaAloD0MIx/Xv+sxvVkCUhpRSlGgVTegDaBZHQIIu23hGYrt1fZQoaAZoCWgPQwiPxTapaJlSQJSGlFKUaBVN6ANoFkdAgjQgF5fMOnV9lChoBmgJaA9DCEt4Qq8/llZAlIaUUpRoFU3oA2gWR0CCNoBYmsvJdX2UKGgGaAloD0MIeqUsQxyzWkCUhpRSlGgVTegDaBZHQII34Kx9oex1fZQoaAZoCWgPQwiDL0ymihZhQJSGlFKUaBVN6ANoFkdAgoVrXtjTa3V9lChoBmgJaA9DCFK2SNqNjFvAlIaUUpRoFU2TAmgWR0CChb19ORDDdX2UKGgGaAloD0MIyJdQweHAVkCUhpRSlGgVTegDaBZHQIKTVsabWmR1fZQoaAZoCWgPQwiL/WX35JtHQJSGlFKUaBVN6ANoFkdAgpc7noxHoXV9lChoBmgJaA9DCJSgv9Cj0mhAlIaUUpRoFU19AmgWR0CCoCSmqHXVdX2UKGgGaAloD0MInwH1ZtSKVkCUhpRSlGgVTegDaBZHQIKqk6kqMFV1fZQoaAZoCWgPQwjHgy12+9BbQJSGlFKUaBVN6ANoFkdAgroar3j+73V9lChoBmgJaA9DCJIf8SvWcDHAlIaUUpRoFUv5aBZHQILByU7jkuJ1fZQoaAZoCWgPQwjMRXwnZqJdQJSGlFKUaBVN6ANoFkdAgsdukLx7RnV9lChoBmgJaA9DCMh8QKAzQFxAlIaUUpRoFU3oA2gWR0CCztRxcVxkdX2UKGgGaAloD0MIbhYvFgasYECUhpRSlGgVTegDaBZHQILQlzIV/MJ1fZQoaAZoCWgPQwiynITSFwpdQJSGlFKUaBVN6ANoFkdAguadNvfj0nV9lChoBmgJaA9DCA3eV+VCFSvAlIaUUpRoFUvpaBZHQILu1xjriVB1fZQoaAZoCWgPQwgrhxbZzsNZQJSGlFKUaBVN6ANoFkdAgu8GZeAuqXV9lChoBmgJaA9DCMXKaOTzFmJAlIaUUpRoFU3oA2gWR0CDEIdzXBgvdX2UKGgGaAloD0MIoIfaNozyPECUhpRSlGgVS/toFkdAgxMgB91EE3V9lChoBmgJaA9DCN0kBoGVJ19AlIaUUpRoFU3oA2gWR0CDFb+CsfaIdX2UKGgGaAloD0MITE9Y4gFRXkCUhpRSlGgVTegDaBZHQIMX909yLht1fZQoaAZoCWgPQwisWPymsE5eQJSGlFKUaBVN6ANoFkdAgxlGax5cDHV9lChoBmgJaA9DCDhNnx1wXVRAlIaUUpRoFU3oA2gWR0CDZfPepGWldX2UKGgGaAloD0MIS633G+0FYkCUhpRSlGgVTegDaBZHQINmS2SdOIt1fZQoaAZoCWgPQwjikuNO6Z1bQJSGlFKUaBVN6ANoFkdAg3N31anrIHV9lChoBmgJaA9DCBr6J7hYOllAlIaUUpRoFU3oA2gWR0CDgLu7YkE+dX2UKGgGaAloD0MIpWq7Cb5OX0CUhpRSlGgVTegDaBZHQIOLDeEZiux1fZQoaAZoCWgPQwj7PbFOlc9dQJSGlFKUaBVN6ANoFkdAg5mfe+Eh7nV9lChoBmgJaA9DCJkNMsnIvVZAlIaUUpRoFU3oA2gWR0CDoPmCiAUddX2UKGgGaAloD0MIDeGYZU9AX0CUhpRSlGgVTegDaBZHQIOtbWEsasJ1fZQoaAZoCWgPQwi0PXrD/eJjQJSGlFKUaBVN6ANoFkdAg69RsuWa+nV9lChoBmgJaA9DCPkwe9l2WiLAlIaUUpRoFUv5aBZHQIO0Xnp0OmR1fZQoaAZoCWgPQwgL7ZxmgbhnQJSGlFKUaBVNkQNoFkdAg75EqtozvnV9lChoBmgJaA9DCNC2mnXGkV5AlIaUUpRoFU3oA2gWR0CDzNLi++M7dX2UKGgGaAloD0MI6bZELjgTFkCUhpRSlGgVS+ZoFkdAg9o2JBPbf3V9lChoBmgJaA9DCJ5dvvVhl1xAlIaUUpRoFU3oA2gWR0CD7XRuTA32dX2UKGgGaAloD0MIi269pgf9XUCUhpRSlGgVTegDaBZHQIPv2XqqwQl1fZQoaAZoCWgPQwgvGcdIduRgQJSGlFKUaBVN6ANoFkdAg/JCjL0SRXV9lChoBmgJaA9DCO/i/bj9o2BAlIaUUpRoFU3oA2gWR0CD9D2QGOdYdX2UKGgGaAloD0MIw/Ln24JEYkCUhpRSlGgVTegDaBZHQIP1WwaBI4F1fZQoaAZoCWgPQwh16PS8GxM6wJSGlFKUaBVNHgFoFkdAhAdaAOJ+D3V9lChoBmgJaA9DCJ1IMNXM6klAlIaUUpRoFU3oA2gWR0CECLKvmozfdX2UKGgGaAloD0MIat5xio4UYECUhpRSlGgVTegDaBZHQIQJD3Cbc451fZQoaAZoCWgPQwgUsvM2NjhfQJSGlFKUaBVN6ANoFkdAhEoWm51/2HV9lChoBmgJaA9DCKBSJcrekv6/lIaUUpRoFU0UAWgWR0CETnJSzgMudX2UKGgGaAloD0MIaoe/JmuPUkCUhpRSlGgVTegDaBZHQIRVJJCjUNN1fZQoaAZoCWgPQwh7Lei9Mf5iQJSGlFKUaBVN6ANoFkdAhGyi2lVLjHV9lChoBmgJaA9DCAsJGF1eY2tAlIaUUpRoFU3qAWgWR0CEbPWXC0ngdX2UKGgGaAloD0MI+83EdCFkVkCUhpRSlGgVTegDaBZHQIRzoOOKfnR1fZQoaAZoCWgPQwgLuOf504ZeQJSGlFKUaBVN6ANoFkdAhH+7tqpLmXV9lChoBmgJaA9DCGOXqN4aHV9AlIaUUpRoFU3oA2gWR0CEgYjEehf0dX2UKGgGaAloD0MIeo1donpVUUCUhpRSlGgVTegDaBZHQISQZu89Oh11fZQoaAZoCWgPQwjvVwG+2/g3QJSGlFKUaBVL7mgWR0CEk2x6fJ3gdX2UKGgGaAloD0MIgO82b5y9XkCUhpRSlGgVTegDaBZHQISfAJJGvwF1fZQoaAZoCWgPQwh8mpMXmehVQJSGlFKUaBVN6ANoFkdAhMF6jnFHa3V9lChoBmgJaA9DCMWRByKLbV1AlIaUUpRoFU3oA2gWR0CEyYOBlMAWdX2UKGgGaAloD0MIWtjTDn8qV0CUhpRSlGgVTegDaBZHQITK8wg1WKd1fZQoaAZoCWgPQwh1WyIXHClgQJSGlFKUaBVN6ANoFkdAhON/pt78enV9lChoBmgJaA9DCBE5fT1f9GJAlIaUUpRoFU3oA2gWR0CE5TlSS/0vdX2UKGgGaAloD0MI7unqjsUjYkCUhpRSlGgVTegDaBZHQITlocghbGF1fZQoaAZoCWgPQwjqtG6D2hZcQJSGlFKUaBVN6ANoFkdAhSjci4axYHV9lChoBmgJaA9DCMk7hzJUWlxAlIaUUpRoFU3oA2gWR0CFLcwmE5AAdX2UKGgGaAloD0MIrkZ2peXsYECUhpRSlGgVTegDaBZHQIU0+KVII4V1fZQoaAZoCWgPQwjfp6rQQDhZQJSGlFKUaBVN6ANoFkdAhUvIJJGvwHV9lChoBmgJaA9DCFqhSPdzA1ZAlIaUUpRoFU3oA2gWR0CFUsJ79hqkdX2UKGgGaAloD0MIsFjDRW4BZUCUhpRSlGgVTegDaBZHQIVeCJAMUh51fZQoaAZoCWgPQwh15bM8DwVkQJSGlFKUaBVN6ANoFkdAhV+k+X7cf3V9lChoBmgJaA9DCK1sH/IWjWNAlIaUUpRoFU3oA2gWR0CFbNpoK2KEdX2UKGgGaAloD0MIQMObNfheYECUhpRSlGgVTegDaBZHQIVvYqLCN0h1fZQoaAZoCWgPQwgjMqzijTxOQJSGlFKUaBVN6ANoFkdAhXk1jiGWU3V9lChoBmgJaA9DCP8h/fZ1rDhAlIaUUpRoFUv1aBZHQIWAOAbyYol1fZQoaAZoCWgPQwinQdE8gChSQJSGlFKUaBVN6ANoFkdAhZSpkXk5qHV9lChoBmgJaA9DCKm/XmHBw2FAlIaUUpRoFU3oA2gWR0CFm1tYSxqxdX2UKGgGaAloD0MIF/GdmPWZW0CUhpRSlGgVTegDaBZHQIWckovzvql1fZQoaAZoCWgPQwj0/dR46cZiQJSGlFKUaBVN6ANoFkdAhbGL1mJ3xHV9lChoBmgJaA9DCJKU9DC0DVtAlIaUUpRoFU3oA2gWR0CFs0AvtdAxdX2UKGgGaAloD0MINBMM55oCYkCUhpRSlGgVTegDaBZHQIWzjzqbBoF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8ade5d28e6b38caed122cb6b0038abd9ac42b743ad4ea6f07790580ce48c94bb
|
3 |
+
size 144040
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fc944771560>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc9447715f0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc944771680>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc944771710>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fc9447717a0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fc944771830>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc9447718c0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fc944771950>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc9447719e0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc944771a70>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc944771b00>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fc9447b6b40>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651707651.6599348,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABp7EL2PGmu6Wq/WO/mPRjhx2J078LBkNgAAgD8AAIA/wFiiPT8SvT5jYHG9aw8Svu9AOzuyBca8AAAAAAAAAAAAv1+9KSx4uk4PcjvLrCU5XGYiu1OhjLoAAIA/AACAP4Jnor4oVcq8qLBwu5CfQTkDNhM+KqbAOQAAgD8AAIA/TfZDvr19DTzCWZ25/2MXueVumr3gstU4AACAPwAAgD9Ggga+SGPwui0FQDxEs5K86LeNO3WFfz0AAIA/AAAAAAVbqL6iRGw/CiqIvqcGlr7+1Me+4TiqvQAAAAAAAAAA5nkHPT1SDruQzto7Zw+YOt3kWTwPfqS7AACAPwAAgD/aNNq9bbSBP2Cf/DwL262+1hC0vSDmoT0AAAAAAAAAAHNq4D1cK3q6JW56u0+QkDhQzOw5qmxmOQAAAAAAAIA/MwQtPgpPWjyb+FG8PSCwurPv4j1Krqq7AACAPwAAgD+m3k2+OCGWuz5r87pqUiy4rS8JPS6uDDoAAIA/AACAPzMJm7yYzmw/I/DpvWolmL44Ab077kIMvgAAAAAAAAAAAGZXPPYoOLb5G4667Rsttt/0rDvU3q05AACAPwAAgD/N2lU8ZGJyPr4Nsz0pSTi+fYCUO4Pd4z0AAAAAAAAAAJPvjL5SbOy7JB4SvWYRU72S6Qo9Sr4+PgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMImE9WDFehQ0CUhpRSlIwBbJRN6AOMAXSUR0CBAZnbqQiidX2UKGgGaAloD0MIv7UTJSHxB8CUhpRSlGgVTSYBaBZHQIEDVR+BpYd1fZQoaAZoCWgPQwjv/nivWgU3QJSGlFKUaBVN6ANoFkdAgREIGyHEdnV9lChoBmgJaA9DCBqjdVQ1UFVAlIaUUpRoFU3oA2gWR0CBGPVlPJq7dX2UKGgGaAloD0MIE30+yoi7HMCUhpRSlGgVTSgBaBZHQIEhZFVktmN1fZQoaAZoCWgPQwiuKCUEq15WQJSGlFKUaBVN6ANoFkdAgTf0JF9a2XV9lChoBmgJaA9DCFWgFoOHsVBAlIaUUpRoFU3oA2gWR0CBRhcD8tPIdX2UKGgGaAloD0MIy4Rf6ufmWkCUhpRSlGgVTegDaBZHQIFLUiQkond1fZQoaAZoCWgPQwjlRpG1hqRMQJSGlFKUaBVN6ANoFkdAgU2YWk8A73V9lChoBmgJaA9DCCo6kst/Vl9AlIaUUpRoFU3oA2gWR0CBTu9ugpSadX2UKGgGaAloD0MIdQZGXtbKQMCUhpRSlGgVTQYBaBZHQIGcmFQEZBN1fZQoaAZoCWgPQwg5K6Im+odeQJSGlFKUaBVN6ANoFkdAgazFGG21D3V9lChoBmgJaA9DCPaYSGk2+1BAlIaUUpRoFU3oA2gWR0CBsT/BnBcidX2UKGgGaAloD0MI4fHtXYMTU0CUhpRSlGgVTegDaBZHQIHGFTYNAkd1fZQoaAZoCWgPQwja4a/JGsFZQJSGlFKUaBVN6ANoFkdAgdc+CkGiYnV9lChoBmgJaA9DCFiqC3iZllVAlIaUUpRoFU3oA2gWR0CB3NsImgJ1dX2UKGgGaAloD0MIxF+TNWoUYECUhpRSlGgVTegDaBZHQIHlyA2AG0N1fZQoaAZoCWgPQwgy422l10BeQJSGlFKUaBVN6ANoFkdAge0rJbMX8HV9lChoBmgJaA9DCIi+u5UlNktAlIaUUpRoFU3oA2gWR0CB7wwBYFJQdX2UKGgGaAloD0MIDmWoiiklYkCUhpRSlGgVTegDaBZHQIH8yGgzxgB1fZQoaAZoCWgPQwjb+BOVDU1aQJSGlFKUaBVN6ANoFkdAggTYtHxz73V9lChoBmgJaA9DCEksKXcfu2FAlIaUUpRoFU3oA2gWR0CCDOpLEk0KdX2UKGgGaAloD0MIx/Xv+sxvVkCUhpRSlGgVTegDaBZHQIIu23hGYrt1fZQoaAZoCWgPQwiPxTapaJlSQJSGlFKUaBVN6ANoFkdAgjQgF5fMOnV9lChoBmgJaA9DCEt4Qq8/llZAlIaUUpRoFU3oA2gWR0CCNoBYmsvJdX2UKGgGaAloD0MIeqUsQxyzWkCUhpRSlGgVTegDaBZHQII34Kx9oex1fZQoaAZoCWgPQwiDL0ymihZhQJSGlFKUaBVN6ANoFkdAgoVrXtjTa3V9lChoBmgJaA9DCFK2SNqNjFvAlIaUUpRoFU2TAmgWR0CChb19ORDDdX2UKGgGaAloD0MIyJdQweHAVkCUhpRSlGgVTegDaBZHQIKTVsabWmR1fZQoaAZoCWgPQwiL/WX35JtHQJSGlFKUaBVN6ANoFkdAgpc7noxHoXV9lChoBmgJaA9DCJSgv9Cj0mhAlIaUUpRoFU19AmgWR0CCoCSmqHXVdX2UKGgGaAloD0MInwH1ZtSKVkCUhpRSlGgVTegDaBZHQIKqk6kqMFV1fZQoaAZoCWgPQwjHgy12+9BbQJSGlFKUaBVN6ANoFkdAgroar3j+73V9lChoBmgJaA9DCJIf8SvWcDHAlIaUUpRoFUv5aBZHQILByU7jkuJ1fZQoaAZoCWgPQwjMRXwnZqJdQJSGlFKUaBVN6ANoFkdAgsdukLx7RnV9lChoBmgJaA9DCMh8QKAzQFxAlIaUUpRoFU3oA2gWR0CCztRxcVxkdX2UKGgGaAloD0MIbhYvFgasYECUhpRSlGgVTegDaBZHQILQlzIV/MJ1fZQoaAZoCWgPQwiynITSFwpdQJSGlFKUaBVN6ANoFkdAguadNvfj0nV9lChoBmgJaA9DCA3eV+VCFSvAlIaUUpRoFUvpaBZHQILu1xjriVB1fZQoaAZoCWgPQwgrhxbZzsNZQJSGlFKUaBVN6ANoFkdAgu8GZeAuqXV9lChoBmgJaA9DCMXKaOTzFmJAlIaUUpRoFU3oA2gWR0CDEIdzXBgvdX2UKGgGaAloD0MIoIfaNozyPECUhpRSlGgVS/toFkdAgxMgB91EE3V9lChoBmgJaA9DCN0kBoGVJ19AlIaUUpRoFU3oA2gWR0CDFb+CsfaIdX2UKGgGaAloD0MITE9Y4gFRXkCUhpRSlGgVTegDaBZHQIMX909yLht1fZQoaAZoCWgPQwisWPymsE5eQJSGlFKUaBVN6ANoFkdAgxlGax5cDHV9lChoBmgJaA9DCDhNnx1wXVRAlIaUUpRoFU3oA2gWR0CDZfPepGWldX2UKGgGaAloD0MIS633G+0FYkCUhpRSlGgVTegDaBZHQINmS2SdOIt1fZQoaAZoCWgPQwjikuNO6Z1bQJSGlFKUaBVN6ANoFkdAg3N31anrIHV9lChoBmgJaA9DCBr6J7hYOllAlIaUUpRoFU3oA2gWR0CDgLu7YkE+dX2UKGgGaAloD0MIpWq7Cb5OX0CUhpRSlGgVTegDaBZHQIOLDeEZiux1fZQoaAZoCWgPQwj7PbFOlc9dQJSGlFKUaBVN6ANoFkdAg5mfe+Eh7nV9lChoBmgJaA9DCJkNMsnIvVZAlIaUUpRoFU3oA2gWR0CDoPmCiAUddX2UKGgGaAloD0MIDeGYZU9AX0CUhpRSlGgVTegDaBZHQIOtbWEsasJ1fZQoaAZoCWgPQwi0PXrD/eJjQJSGlFKUaBVN6ANoFkdAg69RsuWa+nV9lChoBmgJaA9DCPkwe9l2WiLAlIaUUpRoFUv5aBZHQIO0Xnp0OmR1fZQoaAZoCWgPQwgL7ZxmgbhnQJSGlFKUaBVNkQNoFkdAg75EqtozvnV9lChoBmgJaA9DCNC2mnXGkV5AlIaUUpRoFU3oA2gWR0CDzNLi++M7dX2UKGgGaAloD0MI6bZELjgTFkCUhpRSlGgVS+ZoFkdAg9o2JBPbf3V9lChoBmgJaA9DCJ5dvvVhl1xAlIaUUpRoFU3oA2gWR0CD7XRuTA32dX2UKGgGaAloD0MIi269pgf9XUCUhpRSlGgVTegDaBZHQIPv2XqqwQl1fZQoaAZoCWgPQwgvGcdIduRgQJSGlFKUaBVN6ANoFkdAg/JCjL0SRXV9lChoBmgJaA9DCO/i/bj9o2BAlIaUUpRoFU3oA2gWR0CD9D2QGOdYdX2UKGgGaAloD0MIw/Ln24JEYkCUhpRSlGgVTegDaBZHQIP1WwaBI4F1fZQoaAZoCWgPQwh16PS8GxM6wJSGlFKUaBVNHgFoFkdAhAdaAOJ+D3V9lChoBmgJaA9DCJ1IMNXM6klAlIaUUpRoFU3oA2gWR0CECLKvmozfdX2UKGgGaAloD0MIat5xio4UYECUhpRSlGgVTegDaBZHQIQJD3Cbc451fZQoaAZoCWgPQwgUsvM2NjhfQJSGlFKUaBVN6ANoFkdAhEoWm51/2HV9lChoBmgJaA9DCKBSJcrekv6/lIaUUpRoFU0UAWgWR0CETnJSzgMudX2UKGgGaAloD0MIaoe/JmuPUkCUhpRSlGgVTegDaBZHQIRVJJCjUNN1fZQoaAZoCWgPQwh7Lei9Mf5iQJSGlFKUaBVN6ANoFkdAhGyi2lVLjHV9lChoBmgJaA9DCAsJGF1eY2tAlIaUUpRoFU3qAWgWR0CEbPWXC0ngdX2UKGgGaAloD0MI+83EdCFkVkCUhpRSlGgVTegDaBZHQIRzoOOKfnR1fZQoaAZoCWgPQwgLuOf504ZeQJSGlFKUaBVN6ANoFkdAhH+7tqpLmXV9lChoBmgJaA9DCGOXqN4aHV9AlIaUUpRoFU3oA2gWR0CEgYjEehf0dX2UKGgGaAloD0MIeo1donpVUUCUhpRSlGgVTegDaBZHQISQZu89Oh11fZQoaAZoCWgPQwjvVwG+2/g3QJSGlFKUaBVL7mgWR0CEk2x6fJ3gdX2UKGgGaAloD0MIgO82b5y9XkCUhpRSlGgVTegDaBZHQISfAJJGvwF1fZQoaAZoCWgPQwh8mpMXmehVQJSGlFKUaBVN6ANoFkdAhMF6jnFHa3V9lChoBmgJaA9DCMWRByKLbV1AlIaUUpRoFU3oA2gWR0CEyYOBlMAWdX2UKGgGaAloD0MIWtjTDn8qV0CUhpRSlGgVTegDaBZHQITK8wg1WKd1fZQoaAZoCWgPQwh1WyIXHClgQJSGlFKUaBVN6ANoFkdAhON/pt78enV9lChoBmgJaA9DCBE5fT1f9GJAlIaUUpRoFU3oA2gWR0CE5TlSS/0vdX2UKGgGaAloD0MI7unqjsUjYkCUhpRSlGgVTegDaBZHQITlocghbGF1fZQoaAZoCWgPQwjqtG6D2hZcQJSGlFKUaBVN6ANoFkdAhSjci4axYHV9lChoBmgJaA9DCMk7hzJUWlxAlIaUUpRoFU3oA2gWR0CFLcwmE5AAdX2UKGgGaAloD0MIrkZ2peXsYECUhpRSlGgVTegDaBZHQIU0+KVII4V1fZQoaAZoCWgPQwjfp6rQQDhZQJSGlFKUaBVN6ANoFkdAhUvIJJGvwHV9lChoBmgJaA9DCFqhSPdzA1ZAlIaUUpRoFU3oA2gWR0CFUsJ79hqkdX2UKGgGaAloD0MIsFjDRW4BZUCUhpRSlGgVTegDaBZHQIVeCJAMUh51fZQoaAZoCWgPQwh15bM8DwVkQJSGlFKUaBVN6ANoFkdAhV+k+X7cf3V9lChoBmgJaA9DCK1sH/IWjWNAlIaUUpRoFU3oA2gWR0CFbNpoK2KEdX2UKGgGaAloD0MIQMObNfheYECUhpRSlGgVTegDaBZHQIVvYqLCN0h1fZQoaAZoCWgPQwgjMqzijTxOQJSGlFKUaBVN6ANoFkdAhXk1jiGWU3V9lChoBmgJaA9DCP8h/fZ1rDhAlIaUUpRoFUv1aBZHQIWAOAbyYol1fZQoaAZoCWgPQwinQdE8gChSQJSGlFKUaBVN6ANoFkdAhZSpkXk5qHV9lChoBmgJaA9DCKm/XmHBw2FAlIaUUpRoFU3oA2gWR0CFm1tYSxqxdX2UKGgGaAloD0MIF/GdmPWZW0CUhpRSlGgVTegDaBZHQIWckovzvql1fZQoaAZoCWgPQwj0/dR46cZiQJSGlFKUaBVN6ANoFkdAhbGL1mJ3xHV9lChoBmgJaA9DCJKU9DC0DVtAlIaUUpRoFU3oA2gWR0CFs0AvtdAxdX2UKGgGaAloD0MINBMM55oCYkCUhpRSlGgVTegDaBZHQIWzjzqbBoF1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a76f1ae68abca7715bd82dc1e005457d39a0502845221ae6da51054e21260976
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:66f45eb755658dab70e227eb1fba47dfe8a9815313cb07961f5a6d59e4d76b17
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0ae73decb0a8dfed5bae65e3f232050aecd52555f9b0236d6786e22c18c3dda4
|
3 |
+
size 252228
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 164.93595826539965, "std_reward": 74.9382001224494, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-04T23:56:04.396773"}
|