--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-base-game-icons results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: game-icons split: train args: game-icons metrics: - name: Accuracy type: accuracy value: 0.6548387096774193 --- # vit-base-game-icons This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.1693 - Accuracy: 0.6548 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 1337 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.3532 | 1.0 | 440 | 1.4272 | 0.6 | | 1.2843 | 2.0 | 880 | 1.2953 | 0.6032 | | 1.1254 | 3.0 | 1320 | 1.2201 | 0.6339 | | 1.5579 | 4.0 | 1760 | 1.1343 | 0.6677 | | 1.2813 | 5.0 | 2200 | 1.1693 | 0.6548 | ### Framework versions - Transformers 4.28.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.9.0 - Tokenizers 0.12.1