chujiezheng commited on
Commit
3683640
1 Parent(s): 87a54c4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +40 -1
README.md CHANGED
@@ -9,4 +9,43 @@ language:
9
 
10
  The extrapolated (ExPO) model based on [`shenzhi-wang/Llama3-8B-Chinese-Chat`](https://huggingface.co/shenzhi-wang/Llama3-8B-Chinese-Chat) and [`meta-llama/Meta-Llama-3-8B-Instruct`](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct), as in the "[Weak-to-Strong Extrapolation Expedites Alignment](https://arxiv.org/abs/2404.16792)" paper.
11
 
12
- Specifically, we obtain this model by extrapolating **(alpha = 0.3)** from the weights of the SFT and DPO/RLHF checkpoints, achieving superior alignment with human preference.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
  The extrapolated (ExPO) model based on [`shenzhi-wang/Llama3-8B-Chinese-Chat`](https://huggingface.co/shenzhi-wang/Llama3-8B-Chinese-Chat) and [`meta-llama/Meta-Llama-3-8B-Instruct`](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct), as in the "[Weak-to-Strong Extrapolation Expedites Alignment](https://arxiv.org/abs/2404.16792)" paper.
11
 
12
+ Specifically, we obtain this model by extrapolating **(alpha = 0.3)** from the weights of the SFT and DPO/RLHF checkpoints, achieving superior alignment with human preference.
13
+
14
+ **Note:** This is an experimental model, as I have not comprehensively evaluated its Chinese ability. There may occur unexpected issues when we apply extrapolation to the new-language (i.e., Chinese) training.
15
+
16
+ ## Evaluation Results
17
+
18
+ Evaluation results on the **AlpacaEval 2.0** benchmark (you can find the evaluation outputs on the [official GitHub repo](https://github.com/chujiezheng/LLM-Extrapolation/tree/main/results_alpaca)):
19
+
20
+ | | Win Rate (Ori) | LC Win Rate (Ori) | Win Rate (+ ExPO) | LC Win Rate (+ ExPO) |
21
+ | ------------------------------------ | -------------- | ----------------- | ----------------- | -------------------- |
22
+ | `HuggingFaceH4/zephyr-7b-alpha` | 6.7% | 10.0% | **10.6%** | **13.6%** |
23
+ | `HuggingFaceH4/zephyr-7b-beta` | 10.2% | 13.2% | **11.1%** | **14.0%** |
24
+ | `berkeley-nest/Starling-LM-7B-alpha` | 15.0% | 18.3% | **18.2%** | **19.5%** |
25
+ | `Nexusflow/Starling-LM-7B-beta` | 26.6% | 25.8% | **29.6%** | **26.4%** |
26
+ | `snorkelai/Snorkel-Mistral-PairRM` | 24.7% | 24.0% | **28.8%** | **26.4%** |
27
+ | `RLHFlow/LLaMA3-iterative-DPO-final` | 29.2% | 36.0% | **32.7%** | **37.8%** |
28
+ | `internlm/internlm2-chat-1.8b` | 3.8% | 4.0% | **5.2%** | **4.3%** |
29
+ | `internlm/internlm2-chat-7b` | 20.5% | 18.3% | **28.1%** | **22.7%** |
30
+ | `internlm/internlm2-chat-20b` | 36.1% | 24.9% | **46.2%** | **27.2%** |
31
+ | `allenai/tulu-2-dpo-7b` | 8.5% | 10.2% | **11.5%** | **11.7%** |
32
+ | `allenai/tulu-2-dpo-13b` | 11.2% | 15.5% | **15.6%** | **17.6%** |
33
+ | `allenai/tulu-2-dpo-70b` | 15.4% | 21.2% | **23.0%** | **25.7%** |
34
+
35
+ Evaluation results on the **MT-Bench** benchmark (you can find the evaluation outputs on the [official GitHub repo](https://github.com/chujiezheng/LLM-Extrapolation/tree/main/results_mtbench)):
36
+
37
+ | | Original | + ExPO |
38
+ | ------------------------------------ | -------- | -------- |
39
+ | `HuggingFaceH4/zephyr-7b-alpha` | 6.85 | **6.87** |
40
+ | `HuggingFaceH4/zephyr-7b-beta` | 7.02 | **7.06** |
41
+ | `berkeley-nest/Starling-LM-7B-alpha` | 7.82 | **7.91** |
42
+ | `Nexusflow/Starling-LM-7B-beta` | 8.10 | **8.18** |
43
+ | `snorkelai/Snorkel-Mistral-PairRM` | 7.63 | **7.69** |
44
+ | `RLHFlow/LLaMA3-iterative-DPO-final` | 8.08 | **8.45** |
45
+ | `internlm/internlm2-chat-1.8b` | 5.17 | **5.26** |
46
+ | `internlm/internlm2-chat-7b` | 7.72 | **7.80** |
47
+ | `internlm/internlm2-chat-20b` | 8.13 | **8.26** |
48
+ | `allenai/tulu-2-dpo-7b` | 6.35 | **6.38** |
49
+ | `allenai/tulu-2-dpo-13b` | 7.00 | **7.26** |
50
+ | `allenai/tulu-2-dpo-70b` | 7.79 | **8.03** |
51
+