File size: 2,124 Bytes
148e25b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: apache-2.0
base_model: distilbert/distilbert-base-uncased-distilled-squad
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: category-1-delivery-cancellation-distilbert-base-uncased-distilled-squad-v1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# category-1-delivery-cancellation-distilbert-base-uncased-distilled-squad-v1

This model is a fine-tuned version of [distilbert/distilbert-base-uncased-distilled-squad](https://huggingface.co/distilbert/distilbert-base-uncased-distilled-squad) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2431
- Accuracy: 0.9426

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 70
- eval_batch_size: 70
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 1.0   | 286  | 0.3740          | 0.8601   |
| 0.2503        | 2.0   | 572  | 0.1944          | 0.9300   |
| 0.2503        | 3.0   | 858  | 0.1716          | 0.9375   |
| 0.1422        | 4.0   | 1144 | 0.1664          | 0.9413   |
| 0.1422        | 5.0   | 1430 | 0.2271          | 0.9291   |
| 0.0941        | 6.0   | 1716 | 0.2533          | 0.9239   |
| 0.0637        | 7.0   | 2002 | 0.2018          | 0.9427   |
| 0.0637        | 8.0   | 2288 | 0.2064          | 0.9482   |
| 0.0408        | 9.0   | 2574 | 0.2494          | 0.9408   |
| 0.0408        | 10.0  | 2860 | 0.2431          | 0.9426   |


### Framework versions

- Transformers 4.43.2
- Pytorch 2.3.0
- Datasets 2.20.0
- Tokenizers 0.19.1