Chrislu commited on
Commit
a9c4cb8
·
verified ·
1 Parent(s): 1907d8e

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +58 -0
README.md ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1
3
+ # Doc / guide: https://huggingface.co/docs/hub/model-cards
4
+ {}
5
+ ---
6
+
7
+ # Model name
8
+
9
+ <!-- Provide a quick summary of what the model is/does. -->
10
+ Tc_Embedding 是专为增强中文文本检索能力而设计的嵌入模型。它基于bge-m3-retromae[1],实现了预训练、微调、精调全流程。该模型在来自各个领域的大量语料库上进行训练,语料库的批量非常大。截至 2024 年 8 月 27 日,Tc_Embedding 在检索任务中表现出色,在 C-MTEB 排行榜上排名第一,领先的性能得分为 78.23。
11
+
12
+ ## Training Details
13
+ 基于bge-m3-retromae[1],主要改动如下:
14
+ <!-- Provide a longer summary of what this model is. -->
15
+ - 基于bge-m3-retromae[1]在亿级数据上实现了预训练。
16
+ - 在收集的公开亿级检索数据集上实现了微调。
17
+ - 在收集的公开百万级检索数据集和百万级LLM合成数据集上实现了精调。
18
+ - 通过 LLM (QWEN-72B) 进行数据生成,使用 LLM 为message生成新query
19
+ - 数据清洗:
20
+ - 简单的基于规则清洗
21
+ - LLM判断是否可作为搜索引擎查询的query
22
+ - rerank模型对(query,message)评分,舍弃pos中的负例,neg中的正例
23
+
24
+ ## Collect more data for retrieval-type tasks
25
+ 1. MTP
26
+ 2. BGE-LARGE-zh data
27
+ 3. PEG data
28
+ 4. BGE-M3 data
29
+ 5. miracl/miracl
30
+ 6. FreedomIntelligence/Huatuo26M-Lite
31
+
32
+ ## Generate Embedding for text
33
+ ```python
34
+ from FlagEmbedding import BGEM3FlagModel
35
+
36
+ model = BGEM3FlagModel('chuxin/tc_embedding',
37
+ use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
38
+
39
+ sentences_1 = ["样例数据-1", "样例数据-2"]
40
+ sentences_2 = ["样例数据-3", "样例数据-1"]
41
+
42
+ embeddings_1 = model.encode(sentences_1,
43
+ batch_size=12,
44
+ max_length=1024,
45
+ )['dense_vecs']
46
+ embeddings_2 = model.encode(sentences_2)['dense_vecs']
47
+ similarity = embeddings_1 @ embeddings_2.T
48
+ print(similarity)
49
+
50
+ ```
51
+
52
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
53
+
54
+ ### Reference
55
+ 1. https://huggingface.co/BAAI/bge-m3-retromae
56
+ 2. https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/BGE_M3
57
+ 3. https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/baai_general_embedding
58
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->