--- tags: - bertopic library_name: bertopic pipeline_tag: text-classification --- # BERTopic_hurricane_tweet This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets. ## Usage To use this model, please install BERTopic: ``` pip install -U bertopic ``` You can use the model as follows: ```python from bertopic import BERTopic topic_model = BERTopic.load("cindyangelira/BERTopic_hurricane_tweet") topic_model.get_topic_info() ``` ## Topic overview * Number of topics: 11 * Number of training documents: 811
Click here for an overview of all topics. | Topic ID | Topic Keywords | Topic Frequency | Label | |----------|----------------|-----------------|-------| | -1 | medicare - theft - medical - harvey - identity | 1 | -1_medicare_theft_medical_harvey | | 0 | gofundme - donate - houstonstrong - texas - houston | 111 | Weather Updates | | 1 | plaza - txmedcenter - medical - instagram - here | 516 | Relief Efforts | | 2 | hurricaneharvey - houston - harvey - hurricane - houstonflood | 74 | Rescue Operations | | 3 | harvey - hurricane - flooded - houston - tx | 33 | Flooding Reports | | 4 | houston - astros - harvey - snow - houstonstrong | 28 | Storm Damage Reports | | 5 | harvey - reliefforharvey - hurricaneharvey - relief - houstonians | 23 | 5_harvey_reliefforharvey_hurricaneharvey_relief | | 6 | rescued - hurricaneharvey - - - | 14 | 6_rescued_hurricaneharvey__ | | 7 | hurricaneharvey - hurricane - - - | 4 | 7_hurricaneharvey_hurricane__ | | 8 | harvey - flooding - houston - floodwaters - flood | 4 | 8_harvey_flooding_houston_floodwaters | | 9 | houston - hurricaneseason - hurricaneharvey - harvey - weather | 3 | 9_houston_hurricaneseason_hurricaneharvey_harvey |
## Training hyperparameters * calculate_probabilities: False * language: None * low_memory: False * min_topic_size: 15 * n_gram_range: (1, 1) * nr_topics: None * seed_topic_list: None * top_n_words: 10 * verbose: False * zeroshot_min_similarity: 0.85 * zeroshot_topic_list: ['Weather Updates', 'Evacuation Information', 'Emergency Services', 'Relief Efforts', 'Rescue Operations', 'Flooding Reports', 'Traffic and Road Closures', 'Government and Local Authority Announcements', 'Personal Stories and Experiences', 'Storm Damage Reports', 'Others'] ## Framework versions * Numpy: 1.26.4 * HDBSCAN: 0.8.38.post1 * UMAP: 0.5.6 * Pandas: 2.2.2 * Scikit-Learn: 1.2.2 * Sentence-transformers: 3.1.0 * Transformers: 4.44.0 * Numba: 0.60.0 * Plotly: 5.22.0 * Python: 3.10.14