Update README.md
Browse files
README.md
CHANGED
@@ -10,6 +10,8 @@ tags:
|
|
10 |
- gemma2
|
11 |
- trl
|
12 |
- sft
|
|
|
|
|
13 |
---
|
14 |
|
15 |
# Uploaded model
|
@@ -21,3 +23,47 @@ tags:
|
|
21 |
This gemma2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
|
22 |
|
23 |
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
- gemma2
|
11 |
- trl
|
12 |
- sft
|
13 |
+
datasets:
|
14 |
+
- Clinton/Text-to-sql-v1
|
15 |
---
|
16 |
|
17 |
# Uploaded model
|
|
|
23 |
This gemma2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
|
24 |
|
25 |
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
26 |
+
|
27 |
+
|
28 |
+
|
29 |
+
|
30 |
+
|
31 |
+
|
32 |
+
## Model Information
|
33 |
+
|
34 |
+
Summary description and brief definition of inputs and outputs.
|
35 |
+
|
36 |
+
### Description
|
37 |
+
|
38 |
+
This model is based on Gemma2 and is fine-tuned to generate SQL from Natural Language.
|
39 |
+
|
40 |
+
### Usage
|
41 |
+
|
42 |
+
Below we share some code snippets on how to get quickly started with running the model. First, install the Transformers library with:
|
43 |
+
```sh
|
44 |
+
pip install -U transformers
|
45 |
+
...
|
46 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
47 |
+
|
48 |
+
model = AutoModelForCausalLM.from_pretrained("circlelee/gemma-2-2b-it-nl2sql")
|
49 |
+
tokenizer = AutoTokenizer.from_pretrained("circlelee/gemma-2-2b-it-nl2sql", trust_remote_code=True)
|
50 |
+
|
51 |
+
table_schemas = "CREATE TABLE person ( name VARCHAR, age INTEGER, address VARCHAR )"
|
52 |
+
user_query = "people whoes ages are older than 27 and name starts with letter 'k'"
|
53 |
+
messages = [
|
54 |
+
{"role": "user", "content": f"""Use the below SQL tables schemas paired with instruction that describes a task. make SQL query that appropriately completes the request for the provided tables. And make SQL query according the steps.
|
55 |
+
{table_schemas}
|
56 |
+
step 1. check columns that I want.
|
57 |
+
step 2. check condition that I want.
|
58 |
+
step 3. make SQL query to get every information that I want.
|
59 |
+
|
60 |
+
{user_query}
|
61 |
+
"""}
|
62 |
+
]
|
63 |
+
|
64 |
+
formated_messages = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True, return_tensors="pt")
|
65 |
+
input_ids = tokenizer(formated_messages, return_tensors="pt")
|
66 |
+
|
67 |
+
outputs = model.generate(**input_ids, max_new_tokens=64)
|
68 |
+
print(tokenizer.decode(outputs[0]))
|
69 |
+
```
|