ckandemir commited on
Commit
f9e8fc3
1 Parent(s): 904728d

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -16,51 +16,22 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 265.23 +/- 17.90
20
  name: mean_reward
21
  verified: false
22
  ---
23
 
24
  # **PPO** Agent playing **LunarLander-v2**
25
- A trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
 
26
 
27
  ## Usage (with Stable-baselines3)
 
28
 
29
- ```python
30
- from stable_baselines3 import PPO
31
- from stable_baselines3.common.env_util import make_vec_env
32
- from stable_baselines3.common.evaluation import evaluate_policy
33
 
 
 
34
  from huggingface_sb3 import load_from_hub
35
 
36
-
37
- # Download the model checkpoint
38
- model_checkpoint = load_from_hub("ckandemir/ppo-LunarLander-v2", "ppo-LunarLander-v2.zip")
39
- # Create a vectorized environment
40
- env = make_vec_env("LunarLander-v2", n_envs=1)
41
-
42
- # Load the model
43
- model = PPO.load(model_checkpoint, env=env)
44
-
45
- # Evaluate
46
- print("Evaluating model")
47
- mean_reward, std_reward = evaluate_policy(
48
- model,
49
- env,
50
- n_eval_episodes=10,
51
- deterministic=True,
52
- )
53
- print(f"Mean reward = {mean_reward:.2f} +/- {std_reward}")
54
-
55
- # Start a new episode
56
- obs = env.reset()
57
-
58
- try:
59
- while True:
60
- action, state = model.predict(obs, deterministic=True)
61
- obs, reward, done, info = env.step(action)
62
- env.render()
63
-
64
- except KeyboardInterrupt:
65
- pass
66
  ```
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 278.45 +/- 19.35
20
  name: mean_reward
21
  verified: false
22
  ---
23
 
24
  # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
 
28
  ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
 
 
 
 
 
31
 
32
+ ```python
33
+ from stable_baselines3 import ...
34
  from huggingface_sb3 import load_from_hub
35
 
36
+ ...
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
  ```
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e23eca05900>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e23eca05990>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e23eca05a20>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e23eca05ab0>", "_build": "<function ActorCriticPolicy._build at 0x7e23eca05b40>", "forward": "<function ActorCriticPolicy.forward at 0x7e23eca05bd0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e23eca05c60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e23eca05cf0>", "_predict": "<function ActorCriticPolicy._predict at 0x7e23eca05d80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e23eca05e10>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e23eca05ea0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e23eca05f30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e23f9e53940>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691649738553648455, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM3zaT0pIAm6IljrOiV/CzYBGFK3GqYHugAAgD8AAIA/M5lcvSnkILoSd3q7dn42t1E7LjuCao86AACAPwAAgD8ARmY9XNNKupwDHjkJ8sszg0rLukzvN7gAAIA/AACAPwAQhDtIo626Bvvst1eazrKcTW65MkgHNwAAgD8AAIA/AGS9O/YMNrry7mU7UzQgtgKKzblFqIW6AACAPwAAgD8zN3M8XMs3ukp8ZbvgPpM4ebKsu+OQ8TkAAIA/AACAP820OLz22E05E0TdOmYOZjYI1QY8F8sGugAAgD8AAIA/mjWBvOGa5riRGps7FU1rNkbdKbqIzri6AACAPwAAgD+AH+C9SLeWurPbzTo+bJw1Z0LXukWZ7bkAAIA/AACAP9oJ+b0Ui5Y+XtghPtAFtr6Qgb+7o5DNuwAAAAAAAAAAmsXhu3v6hLq6bN40ieFVruRv17rJui20AACAPwAAgD/N/r+8XDsKus7V8jvWV2U3AIS4upRcSzYAAIA/AACAPwC2Ij3AiaA+pKjIPURRh75a7Uc9rxSzPAAAAAAAAAAAmkqJPI/CX7rJaCw6gmI5NjfAbjul3EW5AACAPwAAgD9NeQc94Uilup3V3zr38r412/msOpldALoAAIA/AACAP81cVTwpdCq6a6CQubz5DrU6Dp87D9uoOAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGP7zErGza+MAWyUTegDjAF0lEdAlS7S0WuX/3V9lChoBkdAYoy8+zMRpWgHTegDaAhHQJUwBAB1cMV1fZQoaAZHQGdusXBP9DRoB03oA2gIR0CVNT1lGwzMdX2UKGgGR0BhnoIhQm/naAdN6ANoCEdAlTeyW7e2u3V9lChoBkdAQv5u89Oh02gHS51oCEdAlT8AogFHKHV9lChoBkdAY9v9srNGE2gHTegDaAhHQJVAUr7O3Uh1fZQoaAZHQGfDBk7OmixoB03oA2gIR0CVQHL3bmEHdX2UKGgGR0BjRTVawD/3aAdN6ANoCEdAlUFrhm5DqnV9lChoBkdAZEDaKUFB6mgHTegDaAhHQJVDno5ggHN1fZQoaAZHQGmiTdUKiPBoB03oA2gIR0CVRQvAoG6gdX2UKGgGR0BmZY91U2k0aAdN6ANoCEdAlUj0v9LpR3V9lChoBkdAYXNknTiKi2gHTegDaAhHQJVMtipeeFt1fZQoaAZHQE23nYg7o0RoB0vUaAhHQJVQCvq1PWR1fZQoaAZHQGHe6STyJ9BoB03oA2gIR0CVUlEal1r7dX2UKGgGR0Bpl/DLr5ZbaAdN6ANoCEdAlWJ6IFeOXHV9lChoBkdAaVFFHavicWgHTegDaAhHQJVkO/JvHcV1fZQoaAZHQGaC6N+9alloB03oA2gIR0CVZQTwDvE1dX2UKGgGR0Bk+fLkjopyaAdN6ANoCEdAlWxpR8+ianV9lChoBkdAYoajKxLTQWgHTegDaAhHQJVvgcMmWt51fZQoaAZHQGYJ+NtIkJNoB03oA2gIR0CVcKYDTz/ZdX2UKGgGR0BkEOuHN5dGaAdN6ANoCEdAlXiI5cTrV3V9lChoBkdAZWRZbILgGmgHTegDaAhHQJWAlPznRsx1fZQoaAZHQGQ1+W4Vh1FoB03oA2gIR0CVggPhybQUdX2UKGgGR0BhrT08NhE0aAdN6ANoCEdAlYItrj5sTHV9lChoBkdAWdK2sq8UVWgHTegDaAhHQJWDMiyIHkd1fZQoaAZHQGNuKQ7tAs1oB03oA2gIR0CVhwqdYnv2dX2UKGgGR0BnxAAGSpzcaAdN6ANoCEdAlYtN5dGAkXV9lChoBkdAYxJb0voNeGgHTegDaAhHQJWPTC9AX2x1fZQoaAZHQGIPYRVZLZloB03oA2gIR0CVkvRbbDdhdX2UKGgGR0BhqWX7cfvGaAdN6ANoCEdAleIs0k4WDnV9lChoBkdAY6Llf7aZhWgHTegDaAhHQJXyN9JBgNR1fZQoaAZHQGSwWGqPwNNoB03oA2gIR0CV89CZ4Oc2dX2UKGgGR0BmfcEs8PnTaAdN6ANoCEdAlfSPo3aSLnV9lChoBkdAY+y5vLowEmgHTegDaAhHQJX7NaFEiMZ1fZQoaAZHQGdBOZ9d/rloB03oA2gIR0CV/e1UVBUrdX2UKGgGR0BhmqI+GGmDaAdN6ANoCEdAlf8J/b0voXV9lChoBkdARicv/R3NcGgHS6RoCEdAlgTr39JjD3V9lChoBkdAX78qTbFju2gHTegDaAhHQJYGJWKdhAp1fZQoaAZHQGJqQBHTZxtoB03oA2gIR0CWDW31BdD6dX2UKGgGR0BjV0SVW0Z4aAdN6ANoCEdAlg62dNFjNXV9lChoBkdAYb69eQdS22gHTegDaAhHQJYO2vOhTOx1fZQoaAZHQGEucD8tPHloB03oA2gIR0CWD8Ao5PuYdX2UKGgGR0BidHQhOgxraAdN6ANoCEdAlhMt4eLeh3V9lChoBkdAZvkbS7Xg+GgHTegDaAhHQJYXA0XP7el1fZQoaAZHQGNnv8qFyrBoB03oA2gIR0CWGnq7iADrdX2UKGgGR0BLaH2qT8pDaAdLyWgIR0CWGtCnP3SKdX2UKGgGR0Bl4fC66J66aAdN6ANoCEdAlh10nb7CSHV9lChoBkdAZsnzI3irDWgHTegDaAhHQJYfUr7O3Uh1fZQoaAZHQFR240/GEPFoB0utaAhHQJYmsXMyJsR1fZQoaAZHQDB+ugYgq3FoB0u9aAhHQJYpubRWtEJ1fZQoaAZHQGeh7QkX1rZoB03oA2gIR0CWLIZL7GeddX2UKGgGR0Bnv51mrbQDaAdN6ANoCEdAli3R7JGOMnV9lChoBkdAY4bvYODraGgHTegDaAhHQJYuX0163RZ1fZQoaAZHQGfxf/FR51NoB03oA2gIR0CWNdXuE25ydX2UKGgGR0BnF7V2A5JcaAdN6ANoCEdAljbIcvM8o3V9lChoBkdASSw9FF2FFmgHS+BoCEdAljna86FM7HV9lChoBkdAZdwcqe9SM2gHTegDaAhHQJY8Rpyp71J1fZQoaAZHQGX4q4QSSNhoB03oA2gIR0CWPWTR6WxAdX2UKGgGR0Bm+BlHz6JqaAdN6ANoCEdAlkRUl3QlbHV9lChoBkdAX5+8Cgbp/2gHTegDaAhHQJZFk+aBqbl1fZQoaAZHQGPcrt/nW8RoB03oA2gIR0CWRbNeMQ2/dX2UKGgGR0BjOYduHerNaAdN6ANoCEdAlkp51aGHpXV9lChoBkdAZqEGfPHDJmgHTegDaAhHQJZPFblijL11fZQoaAZHQEAwv3ai9IxoB0vPaAhHQJZTOQwK0D51fZQoaAZHQGj3ZBkZrHloB03oA2gIR0CWU4PtD2J0dX2UKGgGR0BjM5V+7UXpaAdN6ANoCEdAllPw9zOopHV9lChoBkdAUFfTmW+oL2gHS95oCEdAlrAi/bj943V9lChoBkdAYZnD3ueBhGgHTegDaAhHQJawmJSBK+V1fZQoaAZHQGCGqoybhFVoB03oA2gIR0CWtDF72L5zdX2UKGgGR0Bh4Q4XGff5aAdN6ANoCEdAlrdog3cYZXV9lChoBkdAZMjD0Dlo12gHTegDaAhHQJa44na37UJ1fZQoaAZHQGFvhWo3rD9oB03oA2gIR0CWwzz9S/CZdX2UKGgGR0BhTrvd/J/5aAdN6ANoCEdAlsR09dNWVHV9lChoBkdAbxa75Ec81WgHTVMCaAhHQJbEqHj6vaF1fZQoaAZHQGGnuMdcSoRoB03oA2gIR0CWyCdpItlJdX2UKGgGR0BlRNfiPyTZaAdN6ANoCEdAlsrbSmZVn3V9lChoBkdAZiVwKBun/GgHTegDaAhHQJbMFmVZ9ux1fZQoaAZHQGVa3SSeRPpoB03oA2gIR0CW0z2UB4lhdX2UKGgGR0Bhh91MdtEYaAdN6ANoCEdAltSGsvIwNHV9lChoBkdAZMctihFmWmgHTegDaAhHQJbZmjGkvbp1fZQoaAZHQGh5CUPhAGBoB03oA2gIR0CW4mGUwBYFdX2UKGgGR0BlIqhcqvvCaAdN6ANoCEdAluMUR3/xUnV9lChoBkdAZUozfJmukmgHTegDaAhHQJbyQ9+w1SB1fZQoaAZHQGJBobfgrH5oB03oA2gIR0CW8rULUkOadX2UKGgGR0BhthhttQ9BaAdN6ANoCEdAlvYwYYR/VnV9lChoBkdAaJ8Difg75mgHTegDaAhHQJb5gqCpWFN1fZQoaAZHQGVf1stTUAloB03oA2gIR0CW+wRywOe8dX2UKGgGR0BGZQbVBlcyaAdL5mgIR0CXAaa+evpydX2UKGgGR0BooFvhqCYkaAdN6ANoCEdAlwUMXWOIZnV9lChoBkdAZDqsJY1YQ2gHTegDaAhHQJcGMTakAPx1fZQoaAZHQGSKsHryDqZoB03oA2gIR0CXBmBMzuWsdX2UKGgGR0BDdbR4QjD9aAdLyGgIR0CXB4FhoduHdX2UKGgGR0Blwksrd30PaAdN6ANoCEdAlwlm9QGfPHV9lChoBkdAYoJgHeJpFmgHTegDaAhHQJcLndepn6F1fZQoaAZHQGi+vQnhKlJoB03oA2gIR0CXDKYNiH6/dX2UKGgGR0Bkx61G9YfXaAdN6ANoCEdAlxKIQvpQlHV9lChoBkdAaWNzS1E3KmgHTegDaAhHQJcTjIKc/dJ1fZQoaAZHQGP9jRD1GspoB03oA2gIR0CXF/YvnKW+dX2UKGgGR0BgrJ7mdRR/aAdN6ANoCEdAlx+KxHG0eHV9lChoBkdAY/t/zasZHmgHTegDaAhHQJcgI7muDBd1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.9999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "False", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b08cd392dd0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b08cd392e60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b08cd392ef0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b08cd392f80>", "_build": "<function ActorCriticPolicy._build at 0x7b08cd393010>", "forward": "<function ActorCriticPolicy.forward at 0x7b08cd3930a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b08cd393130>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b08cd3931c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7b08cd393250>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b08cd3932e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b08cd393370>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b08cd393400>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b08cd33d880>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1724092699680898010, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAANo9qz2uXbO6c7fMuG03vLMIU0i6Y+bpNwAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV6wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHFei6UaAFyMAWyUS+aMAXSUR0CcvpBOYYzjdX2UKGgGR0BNPeI2wV0taAdLlGgIR0Ccv3Uwi7kGdX2UKGgGR0BwtiFfzBhyaAdNPAFoCEdAnMFFVDKHPHV9lChoBkdAcrWH9FWn0mgHS+NoCEdAnMKRqTKT0XV9lChoBkdAcCuhR64Ue2gHS8doCEdAnMO6Rhc7hnV9lChoBkdAQorWI42jwmgHS5VoCEdAnMXJZntfHHV9lChoBkdAcS8yDqW1MWgHS9VoCEdAnMb7NwBHTnV9lChoBkdAbnNhsqJ/G2gHS+JoCEdAnMhPNRm9QHV9lChoBkdAcmqq0dBBzGgHS+RoCEdAnMmaT0QK8nV9lChoBkdARRe9tdiUgWgHS5xoCEdAnMqBnFo+OnV9lChoBkdAca0jqv/za2gHS7hoCEdAnMzB3FDOT3V9lChoBkdAcnYEehf0E2gHS/doCEdAnM4oUWVNYnV9lChoBkdAbt9qM3qA0GgHS/toCEdAnM+f9UCJXXV9lChoBkdAca+fAbhm5GgHTSIBaAhHQJzRRmukk8l1fZQoaAZHQHLVhMewLVpoB0u0aAhHQJzTkMNMGot1fZQoaAZHQDjSBWgezUtoB0t/aAhHQJzUTDcdo391fZQoaAZHQG9UlTWGyopoB0vJaAhHQJzVcLeANG51fZQoaAZHQHODEe2d/axoB0vbaAhHQJzWsIrvsqt1fZQoaAZHQHDFXRb8m8doB0v1aAhHQJzYGzOX3QF1fZQoaAZHQFJQuBczImxoB0uKaAhHQJzY5e8f3ex1fZQoaAZHQD3HIo3Jgb9oB0uYaAhHQJza9Rjz7Mx1fZQoaAZHQHCeDPOY6XBoB0v0aAhHQJzcXdIoVmB1fZQoaAZHQHEQslXzUZxoB0vOaAhHQJzdhnf2saN1fZQoaAZHQHIVXXNC7btoB00GAWgIR0Cc3yFpPAO8dX2UKGgGR0BzN2ptJnQIaAdL0WgIR0Cc4rZ8a4tpdX2UKGgGR0Byaw+X7cfvaAdL/mgIR0Cc5LbHIZIhdX2UKGgGR0BxA/jKgZjyaAdL/WgIR0Cc5sKJ2t+1dX2UKGgGR0BLpB8hLXcyaAdLg2gIR0Cc58bhWHUMdX2UKGgGR0Bv39xbSqlxaAdL3mgIR0Cc6ZhwVCXydX2UKGgGR0ByMq4SYgJUaAdL/2gIR0Cc7JabF0gbdX2UKGgGRz/zx9srNGExaAdLiGgIR0Cc7Vo3rD64dX2UKGgGR0BwSNs67ulXaAdL5WgIR0Cc7qchTwUhdX2UKGgGR0BI4mozeoDQaAdLh2gIR0Cc72zKcNH6dX2UKGgGR0BIZLOJLuhLaAdLk2gIR0Cc8ESRKYiQdX2UKGgGR0BTuLRSgoPTaAdLfmgIR0Cc8QPZZjhDdX2UKGgGR0ByZaMsH0K7aAdNBQFoCEdAnPO/T9bX6XV9lChoBkdAb58uPFNtZWgHS7RoCEdAnPTWFzuF6HV9lChoBkdAb+Ld0q6OHWgHS9FoCEdAnPYKTwDvE3V9lChoBkdAcJGyWRigCmgHS9doCEdAnPdditq59XV9lChoBkdAcaHQUYbbUWgHS8poCEdAnPio4uK4x3V9lChoBkdAcPbByjpLVWgHS8JoCEdAnPsIqslsxnV9lChoBkdAcCLoJzDGcWgHS91oCEdAnPxX5JsfrHV9lChoBkdAcqGuanaWX2gHS8VoCEdAnP3njU/fO3V9lChoBkdAbVXzYmLLp2gHS8doCEdAnP9iUC7sfXV9lChoBkdAco3Ikqtoz2gHS9ZoCEdAnQDqdYnv2HV9lChoBkfAJYHgHeJpFmgHS35oCEdAnQPKArhBJXV9lChoBkdAcl8usLfDUGgHS+RoCEdAnQXOsgdOqXV9lChoBkdAPDCyMUAT7GgHS6FoCEdAnQbetr9ETnV9lChoBkdAcUUf1YhdMWgHTQoBaAhHQJ0IZaePJaJ1fZQoaAZHQHPhnLmp2lloB02mAWgIR0CdDCWWhRIjdX2UKGgGR0BCfgvDgqEwaAdLn2gIR0CdDQ0bLlmwdX2UKGgGR0ByvFy7wrlOaAdLvmgIR0CdDiuh9LHudX2UKGgGR0BxUikYXO4YaAdLwWgIR0CdD01OCXhPdX2UKGgGR0BvL8MI/qxDaAdLuWgIR0CdEF5uZThpdX2UKGgGR0Bv/taGHpKSaAdLu2gIR0CdEXpS75EddX2UKGgGR0BxVPeO4oZyaAdLvmgIR0CdFEF1B+nZdX2UKGgGR0Bw0/VbzK9xaAdL22gIR0CdFeF9KEnLdX2UKGgGR0BuXwEMb3oLaAdLxGgIR0CdF1NMoMKDdX2UKGgGR0BxhIKNQ0oCaAdNBgFoCEdAnRlthiLEUHV9lChoBkdAcL5vC/GlymgHS+1oCEdAnR0cwUQCjnV9lChoBkdAbGTxKg7HQ2gHTbQBaAhHQJ0fopqh11Z1fZQoaAZHQHKsJc5bQkZoB00HAWgIR0CdIRvNeMQ3dX2UKGgGR0BxkPWjGkvcaAdLvmgIR0CdIjS88La3dX2UKGgGR0BwhRiw0O3EaAdLyWgIR0CdJIgSeyzHdX2UKGgGR0BxeofJV81GaAdLsGgIR0CdJYSxJNCadX2UKGgGR0BxmZTXJ5miaAdL+GgIR0CdJvWEbo8qdX2UKGgGR0BwxxQizLOiaAdL8GgIR0CdKFVrAP/adX2UKGgGR0BxR2nO0LMLaAdL42gIR0CdKapQUHpsdX2UKGgGR0BUmkIC2c8UaAdLrmgIR0CdLAK0UoKEdX2UKGgGR0BxCrgHeJpGaAdL0WgIR0CdLTtF8XvZdX2UKGgGR0BxgIpF1B+naAdL7GgIR0CdLpxEv0yydX2UKGgGR0BAGjt5UtI1aAdLkWgIR0CdL2py6tkndX2UKGgGR0BOH1+y7f52aAdLi2gIR0CdMDOktVaPdX2UKGgGR0Bv2Jh8YyfuaAdNGAFoCEdAnTMJ+2E0znV9lChoBkdALnUvoNd7fGgHS3xoCEdAnTPDAJswc3V9lChoBkdAcazzxgAp8WgHS8FoCEdAnTTxeHBUJnV9lChoBkdAUljCQ9zOo2gHS4JoCEdAnTWqBmPHUHV9lChoBkdAcddOvMbFTGgHS/BoCEdAnTcJbt7a7HV9lChoBkdAcL/LlV94NmgHS8FoCEdAnTgZz90ihXV9lChoBkdAcaXBAfMfR2gHS85oCEdAnTqLiMo+fXV9lChoBkdAQRRx7zCk42gHS1loCEdAnTsbEpAlfXV9lChoBkdAc9Yc2itaIWgHS89oCEdAnTxHcUM5O3V9lChoBkdAcGy2jfvWpmgHS7poCEdAnT1URWcSXnV9lChoBkdAcPa29+PRzGgHS+NoCEdAnT6foRqXW3V9lChoBkdAcQ/Av+OwPmgHS8hoCEdAnUEOW8h9s3V9lChoBkdAQyH3Fkxyn2gHS29oCEdAnUG6QJXyRXV9lChoBkdASSfGS6lLvmgHS49oCEdAnUKLSApazXV9lChoBkdAco6tlqagEmgHS91oCEdAnUPcTrVvuXV9lChoBkdAcLbyPMjeK2gHS99oCEdAnUVW3azu4XV9lChoBkdAcH2DfFaStGgHS8BoCEdAnUbJiNKh+XV9lChoBkdAcUxOgQHzH2gHS9poCEdAnUoLcsUZenV9lChoBkdAcRCBT4tYjmgHS9ZoCEdAnUvXgLqlg3V9lChoBkdAcCfTodMj/2gHS89oCEdAnU12P1ct5HV9lChoBkdAcVyBZZB9kWgHS7ZoCEdAnU7m5+Ytx3V9lChoBkdAcBk5j6N2kmgHS7VoCEdAnVBu2d/ax3V9lChoBkdAQOhksjFAFGgHS5xoCEdAnVKp75VOsXV9lChoBkdARgFUbT+efGgHS2BoCEdAnVM3q/ub7XV9lChoBkdAcRxFPSDyv2gHS9VoCEdAnVR7hegL7XV9lChoBkdASP3r+o99t2gHS5VoCEdAnVVSHM2WIHV9lChoBkdAcT6o2GZeA2gHTQ0BaAhHQJ1W2P8yeqd1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.99, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d0011f7fd76cfcd65df1639bfb852bd3f8f03034bc180a313d6e76dffca40bd5
3
- size 146248
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f97f3d5257ea105ef77326c6386264df6a2d9e9fb3fa73787bbadad57947d9a7
3
+ size 147309
ppo-LunarLander-v2/data CHANGED
@@ -4,54 +4,54 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7e23eca05900>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e23eca05990>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e23eca05a20>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e23eca05ab0>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7e23eca05b40>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7e23eca05bd0>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e23eca05c60>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e23eca05cf0>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7e23eca05d80>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e23eca05e10>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e23eca05ea0>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e23eca05f30>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc._abc_data object at 0x7e23f9e53940>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
24
- "num_timesteps": 1015808,
25
  "_total_timesteps": 1000000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
- "start_time": 1691649738553648455,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM3zaT0pIAm6IljrOiV/CzYBGFK3GqYHugAAgD8AAIA/M5lcvSnkILoSd3q7dn42t1E7LjuCao86AACAPwAAgD8ARmY9XNNKupwDHjkJ8sszg0rLukzvN7gAAIA/AACAPwAQhDtIo626Bvvst1eazrKcTW65MkgHNwAAgD8AAIA/AGS9O/YMNrry7mU7UzQgtgKKzblFqIW6AACAPwAAgD8zN3M8XMs3ukp8ZbvgPpM4ebKsu+OQ8TkAAIA/AACAP820OLz22E05E0TdOmYOZjYI1QY8F8sGugAAgD8AAIA/mjWBvOGa5riRGps7FU1rNkbdKbqIzri6AACAPwAAgD+AH+C9SLeWurPbzTo+bJw1Z0LXukWZ7bkAAIA/AACAP9oJ+b0Ui5Y+XtghPtAFtr6Qgb+7o5DNuwAAAAAAAAAAmsXhu3v6hLq6bN40ieFVruRv17rJui20AACAPwAAgD/N/r+8XDsKus7V8jvWV2U3AIS4upRcSzYAAIA/AACAPwC2Ij3AiaA+pKjIPURRh75a7Uc9rxSzPAAAAAAAAAAAmkqJPI/CX7rJaCw6gmI5NjfAbjul3EW5AACAPwAAgD9NeQc94Uilup3V3zr38r412/msOpldALoAAIA/AACAP81cVTwpdCq6a6CQubz5DrU6Dp87D9uoOAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
38
- ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
  },
40
  "_last_original_obs": null,
41
  "_episode_num": 0,
42
  "use_sde": false,
43
  "sde_sample_freq": -1,
44
- "_current_progress_remaining": -0.015808000000000044,
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
- ":serialized:": "gAWVOQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGP7zErGza+MAWyUTegDjAF0lEdAlS7S0WuX/3V9lChoBkdAYoy8+zMRpWgHTegDaAhHQJUwBAB1cMV1fZQoaAZHQGdusXBP9DRoB03oA2gIR0CVNT1lGwzMdX2UKGgGR0BhnoIhQm/naAdN6ANoCEdAlTeyW7e2u3V9lChoBkdAQv5u89Oh02gHS51oCEdAlT8AogFHKHV9lChoBkdAY9v9srNGE2gHTegDaAhHQJVAUr7O3Uh1fZQoaAZHQGfDBk7OmixoB03oA2gIR0CVQHL3bmEHdX2UKGgGR0BjRTVawD/3aAdN6ANoCEdAlUFrhm5DqnV9lChoBkdAZEDaKUFB6mgHTegDaAhHQJVDno5ggHN1fZQoaAZHQGmiTdUKiPBoB03oA2gIR0CVRQvAoG6gdX2UKGgGR0BmZY91U2k0aAdN6ANoCEdAlUj0v9LpR3V9lChoBkdAYXNknTiKi2gHTegDaAhHQJVMtipeeFt1fZQoaAZHQE23nYg7o0RoB0vUaAhHQJVQCvq1PWR1fZQoaAZHQGHe6STyJ9BoB03oA2gIR0CVUlEal1r7dX2UKGgGR0Bpl/DLr5ZbaAdN6ANoCEdAlWJ6IFeOXHV9lChoBkdAaVFFHavicWgHTegDaAhHQJVkO/JvHcV1fZQoaAZHQGaC6N+9alloB03oA2gIR0CVZQTwDvE1dX2UKGgGR0Bk+fLkjopyaAdN6ANoCEdAlWxpR8+ianV9lChoBkdAYoajKxLTQWgHTegDaAhHQJVvgcMmWt51fZQoaAZHQGYJ+NtIkJNoB03oA2gIR0CVcKYDTz/ZdX2UKGgGR0BkEOuHN5dGaAdN6ANoCEdAlXiI5cTrV3V9lChoBkdAZWRZbILgGmgHTegDaAhHQJWAlPznRsx1fZQoaAZHQGQ1+W4Vh1FoB03oA2gIR0CVggPhybQUdX2UKGgGR0BhrT08NhE0aAdN6ANoCEdAlYItrj5sTHV9lChoBkdAWdK2sq8UVWgHTegDaAhHQJWDMiyIHkd1fZQoaAZHQGNuKQ7tAs1oB03oA2gIR0CVhwqdYnv2dX2UKGgGR0BnxAAGSpzcaAdN6ANoCEdAlYtN5dGAkXV9lChoBkdAYxJb0voNeGgHTegDaAhHQJWPTC9AX2x1fZQoaAZHQGIPYRVZLZloB03oA2gIR0CVkvRbbDdhdX2UKGgGR0BhqWX7cfvGaAdN6ANoCEdAleIs0k4WDnV9lChoBkdAY6Llf7aZhWgHTegDaAhHQJXyN9JBgNR1fZQoaAZHQGSwWGqPwNNoB03oA2gIR0CV89CZ4Oc2dX2UKGgGR0BmfcEs8PnTaAdN6ANoCEdAlfSPo3aSLnV9lChoBkdAY+y5vLowEmgHTegDaAhHQJX7NaFEiMZ1fZQoaAZHQGdBOZ9d/rloB03oA2gIR0CV/e1UVBUrdX2UKGgGR0BhmqI+GGmDaAdN6ANoCEdAlf8J/b0voXV9lChoBkdARicv/R3NcGgHS6RoCEdAlgTr39JjD3V9lChoBkdAX78qTbFju2gHTegDaAhHQJYGJWKdhAp1fZQoaAZHQGJqQBHTZxtoB03oA2gIR0CWDW31BdD6dX2UKGgGR0BjV0SVW0Z4aAdN6ANoCEdAlg62dNFjNXV9lChoBkdAYb69eQdS22gHTegDaAhHQJYO2vOhTOx1fZQoaAZHQGEucD8tPHloB03oA2gIR0CWD8Ao5PuYdX2UKGgGR0BidHQhOgxraAdN6ANoCEdAlhMt4eLeh3V9lChoBkdAZvkbS7Xg+GgHTegDaAhHQJYXA0XP7el1fZQoaAZHQGNnv8qFyrBoB03oA2gIR0CWGnq7iADrdX2UKGgGR0BLaH2qT8pDaAdLyWgIR0CWGtCnP3SKdX2UKGgGR0Bl4fC66J66aAdN6ANoCEdAlh10nb7CSHV9lChoBkdAZsnzI3irDWgHTegDaAhHQJYfUr7O3Uh1fZQoaAZHQFR240/GEPFoB0utaAhHQJYmsXMyJsR1fZQoaAZHQDB+ugYgq3FoB0u9aAhHQJYpubRWtEJ1fZQoaAZHQGeh7QkX1rZoB03oA2gIR0CWLIZL7GeddX2UKGgGR0Bnv51mrbQDaAdN6ANoCEdAli3R7JGOMnV9lChoBkdAY4bvYODraGgHTegDaAhHQJYuX0163RZ1fZQoaAZHQGfxf/FR51NoB03oA2gIR0CWNdXuE25ydX2UKGgGR0BnF7V2A5JcaAdN6ANoCEdAljbIcvM8o3V9lChoBkdASSw9FF2FFmgHS+BoCEdAljna86FM7HV9lChoBkdAZdwcqe9SM2gHTegDaAhHQJY8Rpyp71J1fZQoaAZHQGX4q4QSSNhoB03oA2gIR0CWPWTR6WxAdX2UKGgGR0Bm+BlHz6JqaAdN6ANoCEdAlkRUl3QlbHV9lChoBkdAX5+8Cgbp/2gHTegDaAhHQJZFk+aBqbl1fZQoaAZHQGPcrt/nW8RoB03oA2gIR0CWRbNeMQ2/dX2UKGgGR0BjOYduHerNaAdN6ANoCEdAlkp51aGHpXV9lChoBkdAZqEGfPHDJmgHTegDaAhHQJZPFblijL11fZQoaAZHQEAwv3ai9IxoB0vPaAhHQJZTOQwK0D51fZQoaAZHQGj3ZBkZrHloB03oA2gIR0CWU4PtD2J0dX2UKGgGR0BjM5V+7UXpaAdN6ANoCEdAllPw9zOopHV9lChoBkdAUFfTmW+oL2gHS95oCEdAlrAi/bj943V9lChoBkdAYZnD3ueBhGgHTegDaAhHQJawmJSBK+V1fZQoaAZHQGCGqoybhFVoB03oA2gIR0CWtDF72L5zdX2UKGgGR0Bh4Q4XGff5aAdN6ANoCEdAlrdog3cYZXV9lChoBkdAZMjD0Dlo12gHTegDaAhHQJa44na37UJ1fZQoaAZHQGFvhWo3rD9oB03oA2gIR0CWwzz9S/CZdX2UKGgGR0BhTrvd/J/5aAdN6ANoCEdAlsR09dNWVHV9lChoBkdAbxa75Ec81WgHTVMCaAhHQJbEqHj6vaF1fZQoaAZHQGGnuMdcSoRoB03oA2gIR0CWyCdpItlJdX2UKGgGR0BlRNfiPyTZaAdN6ANoCEdAlsrbSmZVn3V9lChoBkdAZiVwKBun/GgHTegDaAhHQJbMFmVZ9ux1fZQoaAZHQGVa3SSeRPpoB03oA2gIR0CW0z2UB4lhdX2UKGgGR0Bhh91MdtEYaAdN6ANoCEdAltSGsvIwNHV9lChoBkdAZMctihFmWmgHTegDaAhHQJbZmjGkvbp1fZQoaAZHQGh5CUPhAGBoB03oA2gIR0CW4mGUwBYFdX2UKGgGR0BlIqhcqvvCaAdN6ANoCEdAluMUR3/xUnV9lChoBkdAZUozfJmukmgHTegDaAhHQJbyQ9+w1SB1fZQoaAZHQGJBobfgrH5oB03oA2gIR0CW8rULUkOadX2UKGgGR0BhthhttQ9BaAdN6ANoCEdAlvYwYYR/VnV9lChoBkdAaJ8Difg75mgHTegDaAhHQJb5gqCpWFN1fZQoaAZHQGVf1stTUAloB03oA2gIR0CW+wRywOe8dX2UKGgGR0BGZQbVBlcyaAdL5mgIR0CXAaa+evpydX2UKGgGR0BooFvhqCYkaAdN6ANoCEdAlwUMXWOIZnV9lChoBkdAZDqsJY1YQ2gHTegDaAhHQJcGMTakAPx1fZQoaAZHQGSKsHryDqZoB03oA2gIR0CXBmBMzuWsdX2UKGgGR0BDdbR4QjD9aAdLyGgIR0CXB4FhoduHdX2UKGgGR0Blwksrd30PaAdN6ANoCEdAlwlm9QGfPHV9lChoBkdAYoJgHeJpFmgHTegDaAhHQJcLndepn6F1fZQoaAZHQGi+vQnhKlJoB03oA2gIR0CXDKYNiH6/dX2UKGgGR0Bkx61G9YfXaAdN6ANoCEdAlxKIQvpQlHV9lChoBkdAaWNzS1E3KmgHTegDaAhHQJcTjIKc/dJ1fZQoaAZHQGP9jRD1GspoB03oA2gIR0CXF/YvnKW+dX2UKGgGR0BgrJ7mdRR/aAdN6ANoCEdAlx+KxHG0eHV9lChoBkdAY/t/zasZHmgHTegDaAhHQJcgI7muDBd1ZS4="
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
- "_n_updates": 248,
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
  ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
@@ -76,15 +76,15 @@
76
  "dtype": "int64",
77
  "_np_random": null
78
  },
79
- "n_envs": 16,
80
- "n_steps": 2048,
81
- "gamma": 0.9999,
82
  "gae_lambda": 0.98,
83
  "ent_coef": 0.01,
84
  "vf_coef": 0.5,
85
  "max_grad_norm": 0.5,
86
  "batch_size": 64,
87
- "n_epochs": 8,
88
  "clip_range": {
89
  ":type:": "<class 'function'>",
90
  ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7b08cd392dd0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b08cd392e60>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b08cd392ef0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b08cd392f80>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7b08cd393010>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7b08cd3930a0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b08cd393130>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b08cd3931c0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7b08cd393250>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b08cd3932e0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b08cd393370>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b08cd393400>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7b08cd33d880>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
24
+ "num_timesteps": 1000448,
25
  "_total_timesteps": 1000000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
+ "start_time": 1724092699680898010,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAANo9qz2uXbO6c7fMuG03vLMIU0i6Y+bpNwAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
39
  },
40
  "_last_original_obs": null,
41
  "_episode_num": 0,
42
  "use_sde": false,
43
  "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.00044800000000000395,
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV6wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHFei6UaAFyMAWyUS+aMAXSUR0CcvpBOYYzjdX2UKGgGR0BNPeI2wV0taAdLlGgIR0Ccv3Uwi7kGdX2UKGgGR0BwtiFfzBhyaAdNPAFoCEdAnMFFVDKHPHV9lChoBkdAcrWH9FWn0mgHS+NoCEdAnMKRqTKT0XV9lChoBkdAcCuhR64Ue2gHS8doCEdAnMO6Rhc7hnV9lChoBkdAQorWI42jwmgHS5VoCEdAnMXJZntfHHV9lChoBkdAcS8yDqW1MWgHS9VoCEdAnMb7NwBHTnV9lChoBkdAbnNhsqJ/G2gHS+JoCEdAnMhPNRm9QHV9lChoBkdAcmqq0dBBzGgHS+RoCEdAnMmaT0QK8nV9lChoBkdARRe9tdiUgWgHS5xoCEdAnMqBnFo+OnV9lChoBkdAca0jqv/za2gHS7hoCEdAnMzB3FDOT3V9lChoBkdAcnYEehf0E2gHS/doCEdAnM4oUWVNYnV9lChoBkdAbt9qM3qA0GgHS/toCEdAnM+f9UCJXXV9lChoBkdAca+fAbhm5GgHTSIBaAhHQJzRRmukk8l1fZQoaAZHQHLVhMewLVpoB0u0aAhHQJzTkMNMGot1fZQoaAZHQDjSBWgezUtoB0t/aAhHQJzUTDcdo391fZQoaAZHQG9UlTWGyopoB0vJaAhHQJzVcLeANG51fZQoaAZHQHODEe2d/axoB0vbaAhHQJzWsIrvsqt1fZQoaAZHQHDFXRb8m8doB0v1aAhHQJzYGzOX3QF1fZQoaAZHQFJQuBczImxoB0uKaAhHQJzY5e8f3ex1fZQoaAZHQD3HIo3Jgb9oB0uYaAhHQJza9Rjz7Mx1fZQoaAZHQHCeDPOY6XBoB0v0aAhHQJzcXdIoVmB1fZQoaAZHQHEQslXzUZxoB0vOaAhHQJzdhnf2saN1fZQoaAZHQHIVXXNC7btoB00GAWgIR0Cc3yFpPAO8dX2UKGgGR0BzN2ptJnQIaAdL0WgIR0Cc4rZ8a4tpdX2UKGgGR0Byaw+X7cfvaAdL/mgIR0Cc5LbHIZIhdX2UKGgGR0BxA/jKgZjyaAdL/WgIR0Cc5sKJ2t+1dX2UKGgGR0BLpB8hLXcyaAdLg2gIR0Cc58bhWHUMdX2UKGgGR0Bv39xbSqlxaAdL3mgIR0Cc6ZhwVCXydX2UKGgGR0ByMq4SYgJUaAdL/2gIR0Cc7JabF0gbdX2UKGgGRz/zx9srNGExaAdLiGgIR0Cc7Vo3rD64dX2UKGgGR0BwSNs67ulXaAdL5WgIR0Cc7qchTwUhdX2UKGgGR0BI4mozeoDQaAdLh2gIR0Cc72zKcNH6dX2UKGgGR0BIZLOJLuhLaAdLk2gIR0Cc8ESRKYiQdX2UKGgGR0BTuLRSgoPTaAdLfmgIR0Cc8QPZZjhDdX2UKGgGR0ByZaMsH0K7aAdNBQFoCEdAnPO/T9bX6XV9lChoBkdAb58uPFNtZWgHS7RoCEdAnPTWFzuF6HV9lChoBkdAb+Ld0q6OHWgHS9FoCEdAnPYKTwDvE3V9lChoBkdAcJGyWRigCmgHS9doCEdAnPdditq59XV9lChoBkdAcaHQUYbbUWgHS8poCEdAnPio4uK4x3V9lChoBkdAcPbByjpLVWgHS8JoCEdAnPsIqslsxnV9lChoBkdAcCLoJzDGcWgHS91oCEdAnPxX5JsfrHV9lChoBkdAcqGuanaWX2gHS8VoCEdAnP3njU/fO3V9lChoBkdAbVXzYmLLp2gHS8doCEdAnP9iUC7sfXV9lChoBkdAco3Ikqtoz2gHS9ZoCEdAnQDqdYnv2HV9lChoBkfAJYHgHeJpFmgHS35oCEdAnQPKArhBJXV9lChoBkdAcl8usLfDUGgHS+RoCEdAnQXOsgdOqXV9lChoBkdAPDCyMUAT7GgHS6FoCEdAnQbetr9ETnV9lChoBkdAcUUf1YhdMWgHTQoBaAhHQJ0IZaePJaJ1fZQoaAZHQHPhnLmp2lloB02mAWgIR0CdDCWWhRIjdX2UKGgGR0BCfgvDgqEwaAdLn2gIR0CdDQ0bLlmwdX2UKGgGR0ByvFy7wrlOaAdLvmgIR0CdDiuh9LHudX2UKGgGR0BxUikYXO4YaAdLwWgIR0CdD01OCXhPdX2UKGgGR0BvL8MI/qxDaAdLuWgIR0CdEF5uZThpdX2UKGgGR0Bv/taGHpKSaAdLu2gIR0CdEXpS75EddX2UKGgGR0BxVPeO4oZyaAdLvmgIR0CdFEF1B+nZdX2UKGgGR0Bw0/VbzK9xaAdL22gIR0CdFeF9KEnLdX2UKGgGR0BuXwEMb3oLaAdLxGgIR0CdF1NMoMKDdX2UKGgGR0BxhIKNQ0oCaAdNBgFoCEdAnRlthiLEUHV9lChoBkdAcL5vC/GlymgHS+1oCEdAnR0cwUQCjnV9lChoBkdAbGTxKg7HQ2gHTbQBaAhHQJ0fopqh11Z1fZQoaAZHQHKsJc5bQkZoB00HAWgIR0CdIRvNeMQ3dX2UKGgGR0BxkPWjGkvcaAdLvmgIR0CdIjS88La3dX2UKGgGR0BwhRiw0O3EaAdLyWgIR0CdJIgSeyzHdX2UKGgGR0BxeofJV81GaAdLsGgIR0CdJYSxJNCadX2UKGgGR0BxmZTXJ5miaAdL+GgIR0CdJvWEbo8qdX2UKGgGR0BwxxQizLOiaAdL8GgIR0CdKFVrAP/adX2UKGgGR0BxR2nO0LMLaAdL42gIR0CdKapQUHpsdX2UKGgGR0BUmkIC2c8UaAdLrmgIR0CdLAK0UoKEdX2UKGgGR0BxCrgHeJpGaAdL0WgIR0CdLTtF8XvZdX2UKGgGR0BxgIpF1B+naAdL7GgIR0CdLpxEv0yydX2UKGgGR0BAGjt5UtI1aAdLkWgIR0CdL2py6tkndX2UKGgGR0BOH1+y7f52aAdLi2gIR0CdMDOktVaPdX2UKGgGR0Bv2Jh8YyfuaAdNGAFoCEdAnTMJ+2E0znV9lChoBkdALnUvoNd7fGgHS3xoCEdAnTPDAJswc3V9lChoBkdAcazzxgAp8WgHS8FoCEdAnTTxeHBUJnV9lChoBkdAUljCQ9zOo2gHS4JoCEdAnTWqBmPHUHV9lChoBkdAcddOvMbFTGgHS/BoCEdAnTcJbt7a7HV9lChoBkdAcL/LlV94NmgHS8FoCEdAnTgZz90ihXV9lChoBkdAcaXBAfMfR2gHS85oCEdAnTqLiMo+fXV9lChoBkdAQRRx7zCk42gHS1loCEdAnTsbEpAlfXV9lChoBkdAc9Yc2itaIWgHS89oCEdAnTxHcUM5O3V9lChoBkdAcGy2jfvWpmgHS7poCEdAnT1URWcSXnV9lChoBkdAcPa29+PRzGgHS+NoCEdAnT6foRqXW3V9lChoBkdAcQ/Av+OwPmgHS8hoCEdAnUEOW8h9s3V9lChoBkdAQyH3Fkxyn2gHS29oCEdAnUG6QJXyRXV9lChoBkdASSfGS6lLvmgHS49oCEdAnUKLSApazXV9lChoBkdAco6tlqagEmgHS91oCEdAnUPcTrVvuXV9lChoBkdAcLbyPMjeK2gHS99oCEdAnUVW3azu4XV9lChoBkdAcH2DfFaStGgHS8BoCEdAnUbJiNKh+XV9lChoBkdAcUxOgQHzH2gHS9poCEdAnUoLcsUZenV9lChoBkdAcRCBT4tYjmgHS9ZoCEdAnUvXgLqlg3V9lChoBkdAcCfTodMj/2gHS89oCEdAnU12P1ct5HV9lChoBkdAcVyBZZB9kWgHS7ZoCEdAnU7m5+Ytx3V9lChoBkdAcBk5j6N2kmgHS7VoCEdAnVBu2d/ax3V9lChoBkdAQOhksjFAFGgHS5xoCEdAnVKp75VOsXV9lChoBkdARgFUbT+efGgHS2BoCEdAnVM3q/ub7XV9lChoBkdAcRxFPSDyv2gHS9VoCEdAnVR7hegL7XV9lChoBkdASP3r+o99t2gHS5VoCEdAnVVSHM2WIHV9lChoBkdAcT6o2GZeA2gHTQ0BaAhHQJ1W2P8yeqd1ZS4="
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
+ "_n_updates": 3908,
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
  ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
 
76
  "dtype": "int64",
77
  "_np_random": null
78
  },
79
+ "n_envs": 1,
80
+ "n_steps": 1024,
81
+ "gamma": 0.99,
82
  "gae_lambda": 0.98,
83
  "ent_coef": 0.01,
84
  "vf_coef": 0.5,
85
  "max_grad_norm": 0.5,
86
  "batch_size": 64,
87
+ "n_epochs": 4,
88
  "clip_range": {
89
  ":type:": "<class 'function'>",
90
  ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:8875097bcbf789c352605faefd03093aa39e0a36d6c804ea82135a6ce648f809
3
- size 87545
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c120807788e294332c1ac395ff4168941e58ed014fdea4b6557ec15d4c1ef825
3
+ size 88362
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7bba8b963f04dd36d82ac5f83a601b62bde678ce422491f2c67af76466fa00f0
3
- size 43201
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b5b239e5784723530171ab1e92aa7f0e3a94c638fd9c5d8dc9be8f454f3de052
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
- size 431
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt CHANGED
@@ -1,9 +1,9 @@
1
- - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
  - Python: 3.10.12
3
  - Stable-Baselines3: 2.0.0a5
4
- - PyTorch: 2.0.1+cu118
5
- - GPU Enabled: False
6
- - Numpy: 1.25.2
7
  - Cloudpickle: 2.2.1
8
  - Gymnasium: 0.28.1
9
  - OpenAI Gym: 0.25.2
 
1
+ - OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
2
  - Python: 3.10.12
3
  - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.3.1+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.26.4
7
  - Cloudpickle: 2.2.1
8
  - Gymnasium: 0.28.1
9
  - OpenAI Gym: 0.25.2
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 265.2337943740299, "std_reward": 17.89570000290142, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-10T07:09:05.900548"}
 
1
+ {"mean_reward": 278.45308480000006, "std_reward": 19.3480932406175, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-08-19T19:12:09.118495"}