ckanu13kf commited on
Commit
2383763
1 Parent(s): 52f65cb

End of training

Browse files
Files changed (1) hide show
  1. README.md +146 -0
README.md ADDED
@@ -0,0 +1,146 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-sa-4.0
3
+ base_model: microsoft/layoutlmv2-base-uncased
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: test
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # test
15
+
16
+ This model is a fine-tuned version of [microsoft/layoutlmv2-base-uncased](https://huggingface.co/microsoft/layoutlmv2-base-uncased) on an unknown dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 5.0749
19
+
20
+ ## Model description
21
+
22
+ More information needed
23
+
24
+ ## Intended uses & limitations
25
+
26
+ More information needed
27
+
28
+ ## Training and evaluation data
29
+
30
+ More information needed
31
+
32
+ ## Training procedure
33
+
34
+ ### Training hyperparameters
35
+
36
+ The following hyperparameters were used during training:
37
+ - learning_rate: 5e-05
38
+ - train_batch_size: 4
39
+ - eval_batch_size: 8
40
+ - seed: 42
41
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
42
+ - lr_scheduler_type: linear
43
+ - num_epochs: 20
44
+
45
+ ### Training results
46
+
47
+ | Training Loss | Epoch | Step | Validation Loss |
48
+ |:-------------:|:-------:|:----:|:---------------:|
49
+ | 5.3171 | 0.2212 | 50 | 4.6375 |
50
+ | 4.4008 | 0.4425 | 100 | 4.0771 |
51
+ | 4.0457 | 0.6637 | 150 | 3.8669 |
52
+ | 3.8671 | 0.8850 | 200 | 3.6725 |
53
+ | 3.4191 | 1.1062 | 250 | 3.7154 |
54
+ | 3.181 | 1.3274 | 300 | 3.2224 |
55
+ | 3.1471 | 1.5487 | 350 | 3.1611 |
56
+ | 2.8849 | 1.7699 | 400 | 2.9149 |
57
+ | 2.6279 | 1.9912 | 450 | 2.7628 |
58
+ | 2.1833 | 2.2124 | 500 | 2.6845 |
59
+ | 1.9236 | 2.4336 | 550 | 2.5157 |
60
+ | 1.9385 | 2.6549 | 600 | 2.3477 |
61
+ | 1.8375 | 2.8761 | 650 | 2.5764 |
62
+ | 1.5994 | 3.0973 | 700 | 2.5796 |
63
+ | 1.4455 | 3.3186 | 750 | 2.4148 |
64
+ | 1.4008 | 3.5398 | 800 | 2.3462 |
65
+ | 1.4988 | 3.7611 | 850 | 2.0116 |
66
+ | 1.3286 | 3.9823 | 900 | 2.4790 |
67
+ | 1.0156 | 4.2035 | 950 | 2.6341 |
68
+ | 1.0546 | 4.4248 | 1000 | 2.9160 |
69
+ | 0.9135 | 4.6460 | 1050 | 3.3701 |
70
+ | 1.0544 | 4.8673 | 1100 | 2.3959 |
71
+ | 0.8423 | 5.0885 | 1150 | 2.8365 |
72
+ | 0.8101 | 5.3097 | 1200 | 2.7091 |
73
+ | 0.6854 | 5.5310 | 1250 | 3.1581 |
74
+ | 0.7012 | 5.7522 | 1300 | 3.2229 |
75
+ | 0.7611 | 5.9735 | 1350 | 2.8766 |
76
+ | 0.5144 | 6.1947 | 1400 | 3.1662 |
77
+ | 0.6242 | 6.4159 | 1450 | 3.4253 |
78
+ | 0.619 | 6.6372 | 1500 | 3.4169 |
79
+ | 0.4874 | 6.8584 | 1550 | 3.6466 |
80
+ | 0.4547 | 7.0796 | 1600 | 3.2960 |
81
+ | 0.4377 | 7.3009 | 1650 | 3.6329 |
82
+ | 0.3454 | 7.5221 | 1700 | 3.7038 |
83
+ | 0.6575 | 7.7434 | 1750 | 3.6313 |
84
+ | 0.3357 | 7.9646 | 1800 | 3.9394 |
85
+ | 0.2812 | 8.1858 | 1850 | 3.7570 |
86
+ | 0.278 | 8.4071 | 1900 | 3.9145 |
87
+ | 0.3365 | 8.6283 | 1950 | 3.7289 |
88
+ | 0.4358 | 8.8496 | 2000 | 3.3832 |
89
+ | 0.2653 | 9.0708 | 2050 | 3.6875 |
90
+ | 0.2302 | 9.2920 | 2100 | 3.8430 |
91
+ | 0.1409 | 9.5133 | 2150 | 4.0128 |
92
+ | 0.3695 | 9.7345 | 2200 | 3.5634 |
93
+ | 0.2317 | 9.9558 | 2250 | 4.5010 |
94
+ | 0.3039 | 10.1770 | 2300 | 4.3949 |
95
+ | 0.2396 | 10.3982 | 2350 | 4.1234 |
96
+ | 0.2696 | 10.6195 | 2400 | 3.9876 |
97
+ | 0.2627 | 10.8407 | 2450 | 4.0118 |
98
+ | 0.2415 | 11.0619 | 2500 | 4.0133 |
99
+ | 0.062 | 11.2832 | 2550 | 4.1836 |
100
+ | 0.2313 | 11.5044 | 2600 | 4.2826 |
101
+ | 0.1002 | 11.7257 | 2650 | 4.4694 |
102
+ | 0.0836 | 11.9469 | 2700 | 4.6534 |
103
+ | 0.1351 | 12.1681 | 2750 | 4.3303 |
104
+ | 0.0415 | 12.3894 | 2800 | 4.4617 |
105
+ | 0.1199 | 12.6106 | 2850 | 4.5453 |
106
+ | 0.106 | 12.8319 | 2900 | 4.5849 |
107
+ | 0.1003 | 13.0531 | 2950 | 4.7043 |
108
+ | 0.0116 | 13.2743 | 3000 | 4.8034 |
109
+ | 0.0372 | 13.4956 | 3050 | 4.8729 |
110
+ | 0.0587 | 13.7168 | 3100 | 4.7357 |
111
+ | 0.1131 | 13.9381 | 3150 | 4.2960 |
112
+ | 0.0582 | 14.1593 | 3200 | 4.2865 |
113
+ | 0.0746 | 14.3805 | 3250 | 4.5552 |
114
+ | 0.1061 | 14.6018 | 3300 | 4.5042 |
115
+ | 0.108 | 14.8230 | 3350 | 4.5374 |
116
+ | 0.0118 | 15.0442 | 3400 | 4.7829 |
117
+ | 0.0579 | 15.2655 | 3450 | 4.8695 |
118
+ | 0.0358 | 15.4867 | 3500 | 4.9450 |
119
+ | 0.0772 | 15.7080 | 3550 | 4.9850 |
120
+ | 0.0838 | 15.9292 | 3600 | 4.9220 |
121
+ | 0.0478 | 16.1504 | 3650 | 4.8603 |
122
+ | 0.1258 | 16.3717 | 3700 | 5.0143 |
123
+ | 0.0192 | 16.5929 | 3750 | 5.0035 |
124
+ | 0.0856 | 16.8142 | 3800 | 5.0450 |
125
+ | 0.0079 | 17.0354 | 3850 | 5.0792 |
126
+ | 0.0075 | 17.2566 | 3900 | 5.0261 |
127
+ | 0.0647 | 17.4779 | 3950 | 5.0301 |
128
+ | 0.0296 | 17.6991 | 4000 | 4.9634 |
129
+ | 0.0044 | 17.9204 | 4050 | 4.9916 |
130
+ | 0.0117 | 18.1416 | 4100 | 4.9851 |
131
+ | 0.0047 | 18.3628 | 4150 | 4.9993 |
132
+ | 0.0034 | 18.5841 | 4200 | 5.0673 |
133
+ | 0.0466 | 18.8053 | 4250 | 5.0642 |
134
+ | 0.0362 | 19.0265 | 4300 | 5.0544 |
135
+ | 0.0145 | 19.2478 | 4350 | 5.0634 |
136
+ | 0.0125 | 19.4690 | 4400 | 5.0688 |
137
+ | 0.0063 | 19.6903 | 4450 | 5.0728 |
138
+ | 0.0231 | 19.9115 | 4500 | 5.0749 |
139
+
140
+
141
+ ### Framework versions
142
+
143
+ - Transformers 4.43.3
144
+ - Pytorch 2.4.0+cpu
145
+ - Datasets 2.20.0
146
+ - Tokenizers 0.19.1