End of training
Browse files
README.md
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-sa-4.0
|
3 |
+
base_model: microsoft/layoutlmv2-base-uncased
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
model-index:
|
7 |
+
- name: test
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# test
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [microsoft/layoutlmv2-base-uncased](https://huggingface.co/microsoft/layoutlmv2-base-uncased) on an unknown dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 5.0749
|
19 |
+
|
20 |
+
## Model description
|
21 |
+
|
22 |
+
More information needed
|
23 |
+
|
24 |
+
## Intended uses & limitations
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Training and evaluation data
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training procedure
|
33 |
+
|
34 |
+
### Training hyperparameters
|
35 |
+
|
36 |
+
The following hyperparameters were used during training:
|
37 |
+
- learning_rate: 5e-05
|
38 |
+
- train_batch_size: 4
|
39 |
+
- eval_batch_size: 8
|
40 |
+
- seed: 42
|
41 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
42 |
+
- lr_scheduler_type: linear
|
43 |
+
- num_epochs: 20
|
44 |
+
|
45 |
+
### Training results
|
46 |
+
|
47 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
48 |
+
|:-------------:|:-------:|:----:|:---------------:|
|
49 |
+
| 5.3171 | 0.2212 | 50 | 4.6375 |
|
50 |
+
| 4.4008 | 0.4425 | 100 | 4.0771 |
|
51 |
+
| 4.0457 | 0.6637 | 150 | 3.8669 |
|
52 |
+
| 3.8671 | 0.8850 | 200 | 3.6725 |
|
53 |
+
| 3.4191 | 1.1062 | 250 | 3.7154 |
|
54 |
+
| 3.181 | 1.3274 | 300 | 3.2224 |
|
55 |
+
| 3.1471 | 1.5487 | 350 | 3.1611 |
|
56 |
+
| 2.8849 | 1.7699 | 400 | 2.9149 |
|
57 |
+
| 2.6279 | 1.9912 | 450 | 2.7628 |
|
58 |
+
| 2.1833 | 2.2124 | 500 | 2.6845 |
|
59 |
+
| 1.9236 | 2.4336 | 550 | 2.5157 |
|
60 |
+
| 1.9385 | 2.6549 | 600 | 2.3477 |
|
61 |
+
| 1.8375 | 2.8761 | 650 | 2.5764 |
|
62 |
+
| 1.5994 | 3.0973 | 700 | 2.5796 |
|
63 |
+
| 1.4455 | 3.3186 | 750 | 2.4148 |
|
64 |
+
| 1.4008 | 3.5398 | 800 | 2.3462 |
|
65 |
+
| 1.4988 | 3.7611 | 850 | 2.0116 |
|
66 |
+
| 1.3286 | 3.9823 | 900 | 2.4790 |
|
67 |
+
| 1.0156 | 4.2035 | 950 | 2.6341 |
|
68 |
+
| 1.0546 | 4.4248 | 1000 | 2.9160 |
|
69 |
+
| 0.9135 | 4.6460 | 1050 | 3.3701 |
|
70 |
+
| 1.0544 | 4.8673 | 1100 | 2.3959 |
|
71 |
+
| 0.8423 | 5.0885 | 1150 | 2.8365 |
|
72 |
+
| 0.8101 | 5.3097 | 1200 | 2.7091 |
|
73 |
+
| 0.6854 | 5.5310 | 1250 | 3.1581 |
|
74 |
+
| 0.7012 | 5.7522 | 1300 | 3.2229 |
|
75 |
+
| 0.7611 | 5.9735 | 1350 | 2.8766 |
|
76 |
+
| 0.5144 | 6.1947 | 1400 | 3.1662 |
|
77 |
+
| 0.6242 | 6.4159 | 1450 | 3.4253 |
|
78 |
+
| 0.619 | 6.6372 | 1500 | 3.4169 |
|
79 |
+
| 0.4874 | 6.8584 | 1550 | 3.6466 |
|
80 |
+
| 0.4547 | 7.0796 | 1600 | 3.2960 |
|
81 |
+
| 0.4377 | 7.3009 | 1650 | 3.6329 |
|
82 |
+
| 0.3454 | 7.5221 | 1700 | 3.7038 |
|
83 |
+
| 0.6575 | 7.7434 | 1750 | 3.6313 |
|
84 |
+
| 0.3357 | 7.9646 | 1800 | 3.9394 |
|
85 |
+
| 0.2812 | 8.1858 | 1850 | 3.7570 |
|
86 |
+
| 0.278 | 8.4071 | 1900 | 3.9145 |
|
87 |
+
| 0.3365 | 8.6283 | 1950 | 3.7289 |
|
88 |
+
| 0.4358 | 8.8496 | 2000 | 3.3832 |
|
89 |
+
| 0.2653 | 9.0708 | 2050 | 3.6875 |
|
90 |
+
| 0.2302 | 9.2920 | 2100 | 3.8430 |
|
91 |
+
| 0.1409 | 9.5133 | 2150 | 4.0128 |
|
92 |
+
| 0.3695 | 9.7345 | 2200 | 3.5634 |
|
93 |
+
| 0.2317 | 9.9558 | 2250 | 4.5010 |
|
94 |
+
| 0.3039 | 10.1770 | 2300 | 4.3949 |
|
95 |
+
| 0.2396 | 10.3982 | 2350 | 4.1234 |
|
96 |
+
| 0.2696 | 10.6195 | 2400 | 3.9876 |
|
97 |
+
| 0.2627 | 10.8407 | 2450 | 4.0118 |
|
98 |
+
| 0.2415 | 11.0619 | 2500 | 4.0133 |
|
99 |
+
| 0.062 | 11.2832 | 2550 | 4.1836 |
|
100 |
+
| 0.2313 | 11.5044 | 2600 | 4.2826 |
|
101 |
+
| 0.1002 | 11.7257 | 2650 | 4.4694 |
|
102 |
+
| 0.0836 | 11.9469 | 2700 | 4.6534 |
|
103 |
+
| 0.1351 | 12.1681 | 2750 | 4.3303 |
|
104 |
+
| 0.0415 | 12.3894 | 2800 | 4.4617 |
|
105 |
+
| 0.1199 | 12.6106 | 2850 | 4.5453 |
|
106 |
+
| 0.106 | 12.8319 | 2900 | 4.5849 |
|
107 |
+
| 0.1003 | 13.0531 | 2950 | 4.7043 |
|
108 |
+
| 0.0116 | 13.2743 | 3000 | 4.8034 |
|
109 |
+
| 0.0372 | 13.4956 | 3050 | 4.8729 |
|
110 |
+
| 0.0587 | 13.7168 | 3100 | 4.7357 |
|
111 |
+
| 0.1131 | 13.9381 | 3150 | 4.2960 |
|
112 |
+
| 0.0582 | 14.1593 | 3200 | 4.2865 |
|
113 |
+
| 0.0746 | 14.3805 | 3250 | 4.5552 |
|
114 |
+
| 0.1061 | 14.6018 | 3300 | 4.5042 |
|
115 |
+
| 0.108 | 14.8230 | 3350 | 4.5374 |
|
116 |
+
| 0.0118 | 15.0442 | 3400 | 4.7829 |
|
117 |
+
| 0.0579 | 15.2655 | 3450 | 4.8695 |
|
118 |
+
| 0.0358 | 15.4867 | 3500 | 4.9450 |
|
119 |
+
| 0.0772 | 15.7080 | 3550 | 4.9850 |
|
120 |
+
| 0.0838 | 15.9292 | 3600 | 4.9220 |
|
121 |
+
| 0.0478 | 16.1504 | 3650 | 4.8603 |
|
122 |
+
| 0.1258 | 16.3717 | 3700 | 5.0143 |
|
123 |
+
| 0.0192 | 16.5929 | 3750 | 5.0035 |
|
124 |
+
| 0.0856 | 16.8142 | 3800 | 5.0450 |
|
125 |
+
| 0.0079 | 17.0354 | 3850 | 5.0792 |
|
126 |
+
| 0.0075 | 17.2566 | 3900 | 5.0261 |
|
127 |
+
| 0.0647 | 17.4779 | 3950 | 5.0301 |
|
128 |
+
| 0.0296 | 17.6991 | 4000 | 4.9634 |
|
129 |
+
| 0.0044 | 17.9204 | 4050 | 4.9916 |
|
130 |
+
| 0.0117 | 18.1416 | 4100 | 4.9851 |
|
131 |
+
| 0.0047 | 18.3628 | 4150 | 4.9993 |
|
132 |
+
| 0.0034 | 18.5841 | 4200 | 5.0673 |
|
133 |
+
| 0.0466 | 18.8053 | 4250 | 5.0642 |
|
134 |
+
| 0.0362 | 19.0265 | 4300 | 5.0544 |
|
135 |
+
| 0.0145 | 19.2478 | 4350 | 5.0634 |
|
136 |
+
| 0.0125 | 19.4690 | 4400 | 5.0688 |
|
137 |
+
| 0.0063 | 19.6903 | 4450 | 5.0728 |
|
138 |
+
| 0.0231 | 19.9115 | 4500 | 5.0749 |
|
139 |
+
|
140 |
+
|
141 |
+
### Framework versions
|
142 |
+
|
143 |
+
- Transformers 4.43.3
|
144 |
+
- Pytorch 2.4.0+cpu
|
145 |
+
- Datasets 2.20.0
|
146 |
+
- Tokenizers 0.19.1
|