miteshkotak7 commited on
Commit
0b6db0f
·
verified ·
1 Parent(s): 2f2e25b

remove custom inference handler

Browse files
Files changed (1) hide show
  1. handler.py +0 -77
handler.py DELETED
@@ -1,77 +0,0 @@
1
- from typing import Dict, List, Any
2
- from setfit import SetFitModel
3
- import numpy as np
4
-
5
-
6
- class EndpointHandler:
7
- def __init__(self, path=""):
8
- # load model
9
- self.model = SetFitModel.from_pretrained(path)
10
- def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
11
- """
12
- data args:
13
- inputs (:obj: `str` | `PIL.Image` | `np.array`)
14
- kwargs
15
- Return:
16
- A :obj:`list` | `dict`: will be serialized and returned
17
- """
18
-
19
- # get inputs
20
- inputs = data.pop("inputs", data)
21
- if isinstance(inputs, str):
22
- inputs = [inputs]
23
-
24
-
25
- exerciselabels = ['positive experience',
26
- 'power posing',
27
- 'worry vs rumination',
28
- 'self-confidence',
29
- 'negative emotions',
30
- 'sleep',
31
- 'loneliness',
32
- 'imaginary friend',
33
- 'perfectionism',
34
- 'negative self-talk',
35
- 'woop',
36
- 'venting',
37
- 'worry window',
38
- 'act of kindness',
39
- 'blowing balloons',
40
- 'feeling on anger',
41
- 'power of smile',
42
- 'body scan',
43
- 'stress enhancing thoughts',
44
- 'anger ball of fire',
45
- 'emotions',
46
- 'lean against wall',
47
- 'breathing',
48
- 'crossed arms',
49
- 'energy traffic light',
50
- 'boundaries',
51
- 'Inner strength']
52
-
53
- # run normal prediction
54
- preds = self.model.predict(inputs)
55
- scores = self.model.predict_proba(inputs)
56
-
57
- label = [[el for el, p in zip(exerciselabels, ps) if p] for ps in preds]
58
-
59
- # Modify the label array
60
- modified_label = label[0]
61
-
62
- # Extract the positives probabilities from each inner array
63
- modified_proba = [[inner[0][1]] for item, inner in zip(scores, scores)]
64
-
65
-
66
- score = [[el for el, p in zip(modified_proba, ps) if p] for ps in preds]
67
-
68
- # Modify the score array
69
- modified_score = score[0]
70
-
71
-
72
- combined_dict = {key: value for key, value in zip(modified_label, modified_score)}
73
-
74
- output_array = [combined_dict]
75
-
76
- # for element in combined_array:
77
- return preds