File size: 1,922 Bytes
dee8d07
2db35e2
3871fe1
6d2538a
 
 
7dc2ff0
 
6d2538a
7dc2ff0
6d2538a
7dc2ff0
6d2538a
 
dee8d07
 
3871fe1
dee8d07
53565b9
3871fe1
 
dee8d07
 
 
53565b9
 
dee8d07
3871fe1
dee8d07
 
3871fe1
dee8d07
5a6e773
 
 
 
 
 
dee8d07
3871fe1
 
 
dee8d07
3871fe1
 
 
 
 
5cf3ff9
3871fe1
 
 
dee8d07
21f97eb
 
 
 
 
 
 
6d2538a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
---
library_name: zeroshot_classifier
tags:
- transformers
- sentence-transformers
- zeroshot_classifier
license: mit
datasets:
- claritylab/UTCD
language:
- en
pipeline_tag: zero-shot-classification
metrics:
- accuracy
---

# Zero-shot Explicit Binary BERT 

This is a BERT model. 
It was introduced in the Findings of ACL'23 Paper **Label Agnostic Pre-training for Zero-shot Text Classification** by ***Christopher Clarke, Yuzhao Heng, Yiping Kang, Krisztian Flautner, Lingjia Tang and Jason Mars***. 
The code for training and evaluating this model can be found [here](https://github.com/ChrisIsKing/zero-shot-text-classification/tree/master). 

## Model description

This model is intended for zero-shot text classification. 
It was trained under the binary classification framework via explicit training with the aspect-normalized [UTCD](https://huggingface.co/datasets/claritylab/UTCD) dataset. 

- **Finetuned from model:** [`bert-base-uncased`](https://huggingface.co/bert-base-uncased)


## Usage

Install our [python package](https://pypi.org/project/zeroshot-classifier/): 
```bash
pip install zeroshot-classifier
```

Then, you can use the model like this:

```python
>>> from zeroshot_classifier.models import BinaryBertCrossEncoder
>>> model = BinaryBertCrossEncoder(model_name='claritylab/zero-shot-explicit-binary-bert')

>>> text = "I'd like to have this track onto my Classical Relaxations playlist."
>>> labels = [
>>>     'Add To Playlist', 'Book Restaurant', 'Get Weather', 'Play Music', 'Rate Book', 'Search Creative Work',
>>>     'Search Screening Event'
>>> ]

>>> query = [[text, lb] for lb in labels]
>>> logits = model.predict(query, apply_softmax=True)
>>> print(logits)

[[1.0987393e-03 9.9890125e-01]
 [9.9988937e-01 1.1059999e-04]
 [9.9986207e-01 1.3791372e-04]
 [1.6576477e-03 9.9834239e-01]
 [9.9990320e-01 9.6742726e-05]
 [9.9894422e-01 1.0557596e-03]
 [9.9959773e-01 4.0229000e-04]]
```