File size: 1,922 Bytes
dee8d07 2db35e2 3871fe1 6d2538a 7dc2ff0 6d2538a 7dc2ff0 6d2538a 7dc2ff0 6d2538a dee8d07 3871fe1 dee8d07 53565b9 3871fe1 dee8d07 53565b9 dee8d07 3871fe1 dee8d07 3871fe1 dee8d07 5a6e773 dee8d07 3871fe1 dee8d07 3871fe1 5cf3ff9 3871fe1 dee8d07 21f97eb 6d2538a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
---
library_name: zeroshot_classifier
tags:
- transformers
- sentence-transformers
- zeroshot_classifier
license: mit
datasets:
- claritylab/UTCD
language:
- en
pipeline_tag: zero-shot-classification
metrics:
- accuracy
---
# Zero-shot Explicit Binary BERT
This is a BERT model.
It was introduced in the Findings of ACL'23 Paper **Label Agnostic Pre-training for Zero-shot Text Classification** by ***Christopher Clarke, Yuzhao Heng, Yiping Kang, Krisztian Flautner, Lingjia Tang and Jason Mars***.
The code for training and evaluating this model can be found [here](https://github.com/ChrisIsKing/zero-shot-text-classification/tree/master).
## Model description
This model is intended for zero-shot text classification.
It was trained under the binary classification framework via explicit training with the aspect-normalized [UTCD](https://huggingface.co/datasets/claritylab/UTCD) dataset.
- **Finetuned from model:** [`bert-base-uncased`](https://huggingface.co/bert-base-uncased)
## Usage
Install our [python package](https://pypi.org/project/zeroshot-classifier/):
```bash
pip install zeroshot-classifier
```
Then, you can use the model like this:
```python
>>> from zeroshot_classifier.models import BinaryBertCrossEncoder
>>> model = BinaryBertCrossEncoder(model_name='claritylab/zero-shot-explicit-binary-bert')
>>> text = "I'd like to have this track onto my Classical Relaxations playlist."
>>> labels = [
>>> 'Add To Playlist', 'Book Restaurant', 'Get Weather', 'Play Music', 'Rate Book', 'Search Creative Work',
>>> 'Search Screening Event'
>>> ]
>>> query = [[text, lb] for lb in labels]
>>> logits = model.predict(query, apply_softmax=True)
>>> print(logits)
[[1.0987393e-03 9.9890125e-01]
[9.9988937e-01 1.1059999e-04]
[9.9986207e-01 1.3791372e-04]
[1.6576477e-03 9.9834239e-01]
[9.9990320e-01 9.6742726e-05]
[9.9894422e-01 1.0557596e-03]
[9.9959773e-01 4.0229000e-04]]
``` |