--- language: sr datasets: - juznevesti-sr tags: - audio - automatic-speech-recognition widget: - example_title: Croatian example 1 src: https://huggingface.co/classla/wav2vec2-xls-r-parlaspeech-hr/raw/main/1800.m4a - example_title: Croatian example 2 src: https://huggingface.co/classla/wav2vec2-xls-r-parlaspeech-hr/raw/main/00020578b.flac.wav - example_title: Croatian example 3 src: https://huggingface.co/classla/wav2vec2-xls-r-parlaspeech-hr/raw/main/00020570a.flac.wav --- # wav2vec2-large-juznevesti This model for Serbian ASR is based on the [facebook/wav2vec2-xls-r-300m model](https://huggingface.co/facebook/wav2vec2-xls-r-300m) and was fine-tuned with 58 hours of audio and transcripts from [Južne vesti](https://www.juznevesti.com/), programme '15 minuta'. For more info on the dataset creation see [this repo](https://github.com/clarinsi/parlaspeech/tree/main/juzne_vesti). ## Metrics Evaluation is performed on the dev and test portions of the JuzneVesti dataset | | dev | test | |:----|---------:|---------:| | WER | 0.295206 | 0.290094 | | CER | 0.140766 | 0.137642 | ## Usage in `transformers` Tested with `transformers==4.18.0`, `torch==1.11.0`, and `SoundFile==0.10.3.post1`. ```python from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC import soundfile as sf import torch import os device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # load model and tokenizer processor = Wav2Vec2Processor.from_pretrained( "5roop/wav2vec2-xls-r-juznevesti-sr") model = Wav2Vec2ForCTC.from_pretrained("5roop/wav2vec2-xls-r-juznevesti-sr") # download the example wav files: os.system("wget https://huggingface.co/classla/wav2vec2-xls-r-parlaspeech-hr/raw/main/00020570a.flac.wav") # read the wav file speech, sample_rate = sf.read("00020570a.flac.wav") input_values = processor(speech, sampling_rate=sample_rate, return_tensors="pt").input_values.to(device) # remove the raw wav file os.system("rm 00020570a.flac.wav") # retrieve logits logits = model.to(device)(input_values).logits # take argmax and decode predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.decode(predicted_ids[0]) transcription # 'velik broj poslovnih subjekata posluje sa minosom velik deo' ``` ## Training hyperparameters In fine-tuning, the following arguments were used: | arg | value | |-------------------------------|-------| | `per_device_train_batch_size` | 16 | | `gradient_accumulation_steps` | 4 | | `num_train_epochs` | 20 | | `learning_rate` | 3e-4 | | `warmup_steps` | 500 |