pushing model
Browse files- README.md +85 -0
- events.out.tfevents.1697394304.3090-172.825155.0 +3 -0
- poetry.lock +0 -0
- ppo_continuous_action.cleanrl_model +0 -0
- ppo_continuous_action.py +355 -0
- pyproject.toml +108 -0
- replay.mp4 +0 -0
- videos/Swimmer-v4__ppo_continuous_action__1__1697394298-eval/rl-video-episode-0.mp4 +0 -0
- videos/Swimmer-v4__ppo_continuous_action__1__1697394298-eval/rl-video-episode-1.mp4 +0 -0
- videos/Swimmer-v4__ppo_continuous_action__1__1697394298-eval/rl-video-episode-8.mp4 +0 -0
README.md
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- Swimmer-v4
|
4 |
+
- deep-reinforcement-learning
|
5 |
+
- reinforcement-learning
|
6 |
+
- custom-implementation
|
7 |
+
library_name: cleanrl
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: Swimmer-v4
|
16 |
+
type: Swimmer-v4
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -13.47 +/- 3.89
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# (CleanRL) **PPO** Agent Playing **Swimmer-v4**
|
25 |
+
|
26 |
+
This is a trained model of a PPO agent playing Swimmer-v4.
|
27 |
+
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
|
28 |
+
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/ppo_continuous_action.py).
|
29 |
+
|
30 |
+
## Get Started
|
31 |
+
|
32 |
+
To use this model, please install the `cleanrl` package with the following command:
|
33 |
+
|
34 |
+
```
|
35 |
+
pip install "cleanrl[ppo_continuous_action]"
|
36 |
+
python -m cleanrl_utils.enjoy --exp-name ppo_continuous_action --env-id Swimmer-v4
|
37 |
+
```
|
38 |
+
|
39 |
+
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
|
40 |
+
|
41 |
+
|
42 |
+
## Command to reproduce the training
|
43 |
+
|
44 |
+
```bash
|
45 |
+
curl -OL https://huggingface.co/cleanrl/Swimmer-v4-ppo_continuous_action-seed1/raw/main/ppo_continuous_action.py
|
46 |
+
curl -OL https://huggingface.co/cleanrl/Swimmer-v4-ppo_continuous_action-seed1/raw/main/pyproject.toml
|
47 |
+
curl -OL https://huggingface.co/cleanrl/Swimmer-v4-ppo_continuous_action-seed1/raw/main/poetry.lock
|
48 |
+
poetry install --all-extras
|
49 |
+
python ppo_continuous_action.py --track --save-model --upload-model --hf-entity cleanrl --env-id Swimmer-v4 --seed 1
|
50 |
+
```
|
51 |
+
|
52 |
+
# Hyperparameters
|
53 |
+
```python
|
54 |
+
{'anneal_lr': True,
|
55 |
+
'batch_size': 2048,
|
56 |
+
'capture_video': False,
|
57 |
+
'clip_coef': 0.2,
|
58 |
+
'clip_vloss': True,
|
59 |
+
'cuda': True,
|
60 |
+
'ent_coef': 0.0,
|
61 |
+
'env_id': 'Swimmer-v4',
|
62 |
+
'exp_name': 'ppo_continuous_action',
|
63 |
+
'gae_lambda': 0.95,
|
64 |
+
'gamma': 0.99,
|
65 |
+
'hf_entity': 'cleanrl',
|
66 |
+
'learning_rate': 0.0003,
|
67 |
+
'max_grad_norm': 0.5,
|
68 |
+
'minibatch_size': 64,
|
69 |
+
'norm_adv': True,
|
70 |
+
'num_envs': 1,
|
71 |
+
'num_minibatches': 32,
|
72 |
+
'num_steps': 2048,
|
73 |
+
'save_model': True,
|
74 |
+
'seed': 1,
|
75 |
+
'target_kl': None,
|
76 |
+
'torch_deterministic': True,
|
77 |
+
'total_timesteps': 1000000,
|
78 |
+
'track': True,
|
79 |
+
'update_epochs': 10,
|
80 |
+
'upload_model': True,
|
81 |
+
'vf_coef': 0.5,
|
82 |
+
'wandb_entity': None,
|
83 |
+
'wandb_project_name': 'cleanRL'}
|
84 |
+
```
|
85 |
+
|
events.out.tfevents.1697394304.3090-172.825155.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:30cd49e3840c900dd9935bae542283e03dbed114a11b7e042a0cdc7f488685da
|
3 |
+
size 376387
|
poetry.lock
ADDED
The diff for this file is too large to render.
See raw diff
|
|
ppo_continuous_action.cleanrl_model
ADDED
Binary file (43.3 kB). View file
|
|
ppo_continuous_action.py
ADDED
@@ -0,0 +1,355 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# docs and experiment results can be found at https://docs.cleanrl.dev/rl-algorithms/ppo/#ppo_continuous_actionpy
|
2 |
+
import argparse
|
3 |
+
import os
|
4 |
+
import random
|
5 |
+
import time
|
6 |
+
from distutils.util import strtobool
|
7 |
+
|
8 |
+
import gymnasium as gym
|
9 |
+
import numpy as np
|
10 |
+
import torch
|
11 |
+
import torch.nn as nn
|
12 |
+
import torch.optim as optim
|
13 |
+
from torch.distributions.normal import Normal
|
14 |
+
from torch.utils.tensorboard import SummaryWriter
|
15 |
+
|
16 |
+
|
17 |
+
def parse_args():
|
18 |
+
# fmt: off
|
19 |
+
parser = argparse.ArgumentParser()
|
20 |
+
parser.add_argument("--exp-name", type=str, default=os.path.basename(__file__).rstrip(".py"),
|
21 |
+
help="the name of this experiment")
|
22 |
+
parser.add_argument("--seed", type=int, default=1,
|
23 |
+
help="seed of the experiment")
|
24 |
+
parser.add_argument("--torch-deterministic", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
|
25 |
+
help="if toggled, `torch.backends.cudnn.deterministic=False`")
|
26 |
+
parser.add_argument("--cuda", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
|
27 |
+
help="if toggled, cuda will be enabled by default")
|
28 |
+
parser.add_argument("--track", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
|
29 |
+
help="if toggled, this experiment will be tracked with Weights and Biases")
|
30 |
+
parser.add_argument("--wandb-project-name", type=str, default="cleanRL",
|
31 |
+
help="the wandb's project name")
|
32 |
+
parser.add_argument("--wandb-entity", type=str, default=None,
|
33 |
+
help="the entity (team) of wandb's project")
|
34 |
+
parser.add_argument("--capture-video", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
|
35 |
+
help="whether to capture videos of the agent performances (check out `videos` folder)")
|
36 |
+
parser.add_argument("--save-model", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
|
37 |
+
help="whether to save model into the `runs/{run_name}` folder")
|
38 |
+
parser.add_argument("--upload-model", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
|
39 |
+
help="whether to upload the saved model to huggingface")
|
40 |
+
parser.add_argument("--hf-entity", type=str, default="",
|
41 |
+
help="the user or org name of the model repository from the Hugging Face Hub")
|
42 |
+
|
43 |
+
# Algorithm specific arguments
|
44 |
+
parser.add_argument("--env-id", type=str, default="HalfCheetah-v4",
|
45 |
+
help="the id of the environment")
|
46 |
+
parser.add_argument("--total-timesteps", type=int, default=1000000,
|
47 |
+
help="total timesteps of the experiments")
|
48 |
+
parser.add_argument("--learning-rate", type=float, default=3e-4,
|
49 |
+
help="the learning rate of the optimizer")
|
50 |
+
parser.add_argument("--num-envs", type=int, default=1,
|
51 |
+
help="the number of parallel game environments")
|
52 |
+
parser.add_argument("--num-steps", type=int, default=2048,
|
53 |
+
help="the number of steps to run in each environment per policy rollout")
|
54 |
+
parser.add_argument("--anneal-lr", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
|
55 |
+
help="Toggle learning rate annealing for policy and value networks")
|
56 |
+
parser.add_argument("--gamma", type=float, default=0.99,
|
57 |
+
help="the discount factor gamma")
|
58 |
+
parser.add_argument("--gae-lambda", type=float, default=0.95,
|
59 |
+
help="the lambda for the general advantage estimation")
|
60 |
+
parser.add_argument("--num-minibatches", type=int, default=32,
|
61 |
+
help="the number of mini-batches")
|
62 |
+
parser.add_argument("--update-epochs", type=int, default=10,
|
63 |
+
help="the K epochs to update the policy")
|
64 |
+
parser.add_argument("--norm-adv", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
|
65 |
+
help="Toggles advantages normalization")
|
66 |
+
parser.add_argument("--clip-coef", type=float, default=0.2,
|
67 |
+
help="the surrogate clipping coefficient")
|
68 |
+
parser.add_argument("--clip-vloss", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
|
69 |
+
help="Toggles whether or not to use a clipped loss for the value function, as per the paper.")
|
70 |
+
parser.add_argument("--ent-coef", type=float, default=0.0,
|
71 |
+
help="coefficient of the entropy")
|
72 |
+
parser.add_argument("--vf-coef", type=float, default=0.5,
|
73 |
+
help="coefficient of the value function")
|
74 |
+
parser.add_argument("--max-grad-norm", type=float, default=0.5,
|
75 |
+
help="the maximum norm for the gradient clipping")
|
76 |
+
parser.add_argument("--target-kl", type=float, default=None,
|
77 |
+
help="the target KL divergence threshold")
|
78 |
+
args = parser.parse_args()
|
79 |
+
args.batch_size = int(args.num_envs * args.num_steps)
|
80 |
+
args.minibatch_size = int(args.batch_size // args.num_minibatches)
|
81 |
+
# fmt: on
|
82 |
+
return args
|
83 |
+
|
84 |
+
|
85 |
+
def make_env(env_id, idx, capture_video, run_name, gamma):
|
86 |
+
def thunk():
|
87 |
+
if capture_video and idx == 0:
|
88 |
+
env = gym.make(env_id, render_mode="rgb_array")
|
89 |
+
env = gym.wrappers.RecordVideo(env, f"videos/{run_name}")
|
90 |
+
else:
|
91 |
+
env = gym.make(env_id)
|
92 |
+
env = gym.wrappers.FlattenObservation(env) # deal with dm_control's Dict observation space
|
93 |
+
env = gym.wrappers.RecordEpisodeStatistics(env)
|
94 |
+
env = gym.wrappers.ClipAction(env)
|
95 |
+
env = gym.wrappers.NormalizeObservation(env)
|
96 |
+
env = gym.wrappers.TransformObservation(env, lambda obs: np.clip(obs, -10, 10))
|
97 |
+
env = gym.wrappers.NormalizeReward(env, gamma=gamma)
|
98 |
+
env = gym.wrappers.TransformReward(env, lambda reward: np.clip(reward, -10, 10))
|
99 |
+
return env
|
100 |
+
|
101 |
+
return thunk
|
102 |
+
|
103 |
+
|
104 |
+
def layer_init(layer, std=np.sqrt(2), bias_const=0.0):
|
105 |
+
torch.nn.init.orthogonal_(layer.weight, std)
|
106 |
+
torch.nn.init.constant_(layer.bias, bias_const)
|
107 |
+
return layer
|
108 |
+
|
109 |
+
|
110 |
+
class Agent(nn.Module):
|
111 |
+
def __init__(self, envs):
|
112 |
+
super().__init__()
|
113 |
+
self.critic = nn.Sequential(
|
114 |
+
layer_init(nn.Linear(np.array(envs.single_observation_space.shape).prod(), 64)),
|
115 |
+
nn.Tanh(),
|
116 |
+
layer_init(nn.Linear(64, 64)),
|
117 |
+
nn.Tanh(),
|
118 |
+
layer_init(nn.Linear(64, 1), std=1.0),
|
119 |
+
)
|
120 |
+
self.actor_mean = nn.Sequential(
|
121 |
+
layer_init(nn.Linear(np.array(envs.single_observation_space.shape).prod(), 64)),
|
122 |
+
nn.Tanh(),
|
123 |
+
layer_init(nn.Linear(64, 64)),
|
124 |
+
nn.Tanh(),
|
125 |
+
layer_init(nn.Linear(64, np.prod(envs.single_action_space.shape)), std=0.01),
|
126 |
+
)
|
127 |
+
self.actor_logstd = nn.Parameter(torch.zeros(1, np.prod(envs.single_action_space.shape)))
|
128 |
+
|
129 |
+
def get_value(self, x):
|
130 |
+
return self.critic(x)
|
131 |
+
|
132 |
+
def get_action_and_value(self, x, action=None):
|
133 |
+
action_mean = self.actor_mean(x)
|
134 |
+
action_logstd = self.actor_logstd.expand_as(action_mean)
|
135 |
+
action_std = torch.exp(action_logstd)
|
136 |
+
probs = Normal(action_mean, action_std)
|
137 |
+
if action is None:
|
138 |
+
action = probs.sample()
|
139 |
+
return action, probs.log_prob(action).sum(1), probs.entropy().sum(1), self.critic(x)
|
140 |
+
|
141 |
+
|
142 |
+
if __name__ == "__main__":
|
143 |
+
args = parse_args()
|
144 |
+
run_name = f"{args.env_id}__{args.exp_name}__{args.seed}__{int(time.time())}"
|
145 |
+
if args.track:
|
146 |
+
import wandb
|
147 |
+
|
148 |
+
wandb.init(
|
149 |
+
project=args.wandb_project_name,
|
150 |
+
entity=args.wandb_entity,
|
151 |
+
sync_tensorboard=True,
|
152 |
+
config=vars(args),
|
153 |
+
name=run_name,
|
154 |
+
monitor_gym=True,
|
155 |
+
save_code=True,
|
156 |
+
)
|
157 |
+
writer = SummaryWriter(f"runs/{run_name}")
|
158 |
+
writer.add_text(
|
159 |
+
"hyperparameters",
|
160 |
+
"|param|value|\n|-|-|\n%s" % ("\n".join([f"|{key}|{value}|" for key, value in vars(args).items()])),
|
161 |
+
)
|
162 |
+
|
163 |
+
# TRY NOT TO MODIFY: seeding
|
164 |
+
random.seed(args.seed)
|
165 |
+
np.random.seed(args.seed)
|
166 |
+
torch.manual_seed(args.seed)
|
167 |
+
torch.backends.cudnn.deterministic = args.torch_deterministic
|
168 |
+
|
169 |
+
device = torch.device("cuda" if torch.cuda.is_available() and args.cuda else "cpu")
|
170 |
+
|
171 |
+
# env setup
|
172 |
+
envs = gym.vector.SyncVectorEnv(
|
173 |
+
[make_env(args.env_id, i, args.capture_video, run_name, args.gamma) for i in range(args.num_envs)]
|
174 |
+
)
|
175 |
+
assert isinstance(envs.single_action_space, gym.spaces.Box), "only continuous action space is supported"
|
176 |
+
|
177 |
+
agent = Agent(envs).to(device)
|
178 |
+
optimizer = optim.Adam(agent.parameters(), lr=args.learning_rate, eps=1e-5)
|
179 |
+
|
180 |
+
# ALGO Logic: Storage setup
|
181 |
+
obs = torch.zeros((args.num_steps, args.num_envs) + envs.single_observation_space.shape).to(device)
|
182 |
+
actions = torch.zeros((args.num_steps, args.num_envs) + envs.single_action_space.shape).to(device)
|
183 |
+
logprobs = torch.zeros((args.num_steps, args.num_envs)).to(device)
|
184 |
+
rewards = torch.zeros((args.num_steps, args.num_envs)).to(device)
|
185 |
+
dones = torch.zeros((args.num_steps, args.num_envs)).to(device)
|
186 |
+
values = torch.zeros((args.num_steps, args.num_envs)).to(device)
|
187 |
+
|
188 |
+
# TRY NOT TO MODIFY: start the game
|
189 |
+
global_step = 0
|
190 |
+
start_time = time.time()
|
191 |
+
next_obs, _ = envs.reset(seed=args.seed)
|
192 |
+
next_obs = torch.Tensor(next_obs).to(device)
|
193 |
+
next_done = torch.zeros(args.num_envs).to(device)
|
194 |
+
num_updates = args.total_timesteps // args.batch_size
|
195 |
+
|
196 |
+
for update in range(1, num_updates + 1):
|
197 |
+
# Annealing the rate if instructed to do so.
|
198 |
+
if args.anneal_lr:
|
199 |
+
frac = 1.0 - (update - 1.0) / num_updates
|
200 |
+
lrnow = frac * args.learning_rate
|
201 |
+
optimizer.param_groups[0]["lr"] = lrnow
|
202 |
+
|
203 |
+
for step in range(0, args.num_steps):
|
204 |
+
global_step += 1 * args.num_envs
|
205 |
+
obs[step] = next_obs
|
206 |
+
dones[step] = next_done
|
207 |
+
|
208 |
+
# ALGO LOGIC: action logic
|
209 |
+
with torch.no_grad():
|
210 |
+
action, logprob, _, value = agent.get_action_and_value(next_obs)
|
211 |
+
values[step] = value.flatten()
|
212 |
+
actions[step] = action
|
213 |
+
logprobs[step] = logprob
|
214 |
+
|
215 |
+
# TRY NOT TO MODIFY: execute the game and log data.
|
216 |
+
next_obs, reward, terminations, truncations, infos = envs.step(action.cpu().numpy())
|
217 |
+
done = np.logical_or(terminations, truncations)
|
218 |
+
rewards[step] = torch.tensor(reward).to(device).view(-1)
|
219 |
+
next_obs, next_done = torch.Tensor(next_obs).to(device), torch.Tensor(done).to(device)
|
220 |
+
|
221 |
+
# Only print when at least 1 env is done
|
222 |
+
if "final_info" not in infos:
|
223 |
+
continue
|
224 |
+
|
225 |
+
for info in infos["final_info"]:
|
226 |
+
# Skip the envs that are not done
|
227 |
+
if info is None:
|
228 |
+
continue
|
229 |
+
print(f"global_step={global_step}, episodic_return={info['episode']['r']}")
|
230 |
+
writer.add_scalar("charts/episodic_return", info["episode"]["r"], global_step)
|
231 |
+
writer.add_scalar("charts/episodic_length", info["episode"]["l"], global_step)
|
232 |
+
|
233 |
+
# bootstrap value if not done
|
234 |
+
with torch.no_grad():
|
235 |
+
next_value = agent.get_value(next_obs).reshape(1, -1)
|
236 |
+
advantages = torch.zeros_like(rewards).to(device)
|
237 |
+
lastgaelam = 0
|
238 |
+
for t in reversed(range(args.num_steps)):
|
239 |
+
if t == args.num_steps - 1:
|
240 |
+
nextnonterminal = 1.0 - next_done
|
241 |
+
nextvalues = next_value
|
242 |
+
else:
|
243 |
+
nextnonterminal = 1.0 - dones[t + 1]
|
244 |
+
nextvalues = values[t + 1]
|
245 |
+
delta = rewards[t] + args.gamma * nextvalues * nextnonterminal - values[t]
|
246 |
+
advantages[t] = lastgaelam = delta + args.gamma * args.gae_lambda * nextnonterminal * lastgaelam
|
247 |
+
returns = advantages + values
|
248 |
+
|
249 |
+
# flatten the batch
|
250 |
+
b_obs = obs.reshape((-1,) + envs.single_observation_space.shape)
|
251 |
+
b_logprobs = logprobs.reshape(-1)
|
252 |
+
b_actions = actions.reshape((-1,) + envs.single_action_space.shape)
|
253 |
+
b_advantages = advantages.reshape(-1)
|
254 |
+
b_returns = returns.reshape(-1)
|
255 |
+
b_values = values.reshape(-1)
|
256 |
+
|
257 |
+
# Optimizing the policy and value network
|
258 |
+
b_inds = np.arange(args.batch_size)
|
259 |
+
clipfracs = []
|
260 |
+
for epoch in range(args.update_epochs):
|
261 |
+
np.random.shuffle(b_inds)
|
262 |
+
for start in range(0, args.batch_size, args.minibatch_size):
|
263 |
+
end = start + args.minibatch_size
|
264 |
+
mb_inds = b_inds[start:end]
|
265 |
+
|
266 |
+
_, newlogprob, entropy, newvalue = agent.get_action_and_value(b_obs[mb_inds], b_actions[mb_inds])
|
267 |
+
logratio = newlogprob - b_logprobs[mb_inds]
|
268 |
+
ratio = logratio.exp()
|
269 |
+
|
270 |
+
with torch.no_grad():
|
271 |
+
# calculate approx_kl http://joschu.net/blog/kl-approx.html
|
272 |
+
old_approx_kl = (-logratio).mean()
|
273 |
+
approx_kl = ((ratio - 1) - logratio).mean()
|
274 |
+
clipfracs += [((ratio - 1.0).abs() > args.clip_coef).float().mean().item()]
|
275 |
+
|
276 |
+
mb_advantages = b_advantages[mb_inds]
|
277 |
+
if args.norm_adv:
|
278 |
+
mb_advantages = (mb_advantages - mb_advantages.mean()) / (mb_advantages.std() + 1e-8)
|
279 |
+
|
280 |
+
# Policy loss
|
281 |
+
pg_loss1 = -mb_advantages * ratio
|
282 |
+
pg_loss2 = -mb_advantages * torch.clamp(ratio, 1 - args.clip_coef, 1 + args.clip_coef)
|
283 |
+
pg_loss = torch.max(pg_loss1, pg_loss2).mean()
|
284 |
+
|
285 |
+
# Value loss
|
286 |
+
newvalue = newvalue.view(-1)
|
287 |
+
if args.clip_vloss:
|
288 |
+
v_loss_unclipped = (newvalue - b_returns[mb_inds]) ** 2
|
289 |
+
v_clipped = b_values[mb_inds] + torch.clamp(
|
290 |
+
newvalue - b_values[mb_inds],
|
291 |
+
-args.clip_coef,
|
292 |
+
args.clip_coef,
|
293 |
+
)
|
294 |
+
v_loss_clipped = (v_clipped - b_returns[mb_inds]) ** 2
|
295 |
+
v_loss_max = torch.max(v_loss_unclipped, v_loss_clipped)
|
296 |
+
v_loss = 0.5 * v_loss_max.mean()
|
297 |
+
else:
|
298 |
+
v_loss = 0.5 * ((newvalue - b_returns[mb_inds]) ** 2).mean()
|
299 |
+
|
300 |
+
entropy_loss = entropy.mean()
|
301 |
+
loss = pg_loss - args.ent_coef * entropy_loss + v_loss * args.vf_coef
|
302 |
+
|
303 |
+
optimizer.zero_grad()
|
304 |
+
loss.backward()
|
305 |
+
nn.utils.clip_grad_norm_(agent.parameters(), args.max_grad_norm)
|
306 |
+
optimizer.step()
|
307 |
+
|
308 |
+
if args.target_kl is not None:
|
309 |
+
if approx_kl > args.target_kl:
|
310 |
+
break
|
311 |
+
|
312 |
+
y_pred, y_true = b_values.cpu().numpy(), b_returns.cpu().numpy()
|
313 |
+
var_y = np.var(y_true)
|
314 |
+
explained_var = np.nan if var_y == 0 else 1 - np.var(y_true - y_pred) / var_y
|
315 |
+
|
316 |
+
# TRY NOT TO MODIFY: record rewards for plotting purposes
|
317 |
+
writer.add_scalar("charts/learning_rate", optimizer.param_groups[0]["lr"], global_step)
|
318 |
+
writer.add_scalar("losses/value_loss", v_loss.item(), global_step)
|
319 |
+
writer.add_scalar("losses/policy_loss", pg_loss.item(), global_step)
|
320 |
+
writer.add_scalar("losses/entropy", entropy_loss.item(), global_step)
|
321 |
+
writer.add_scalar("losses/old_approx_kl", old_approx_kl.item(), global_step)
|
322 |
+
writer.add_scalar("losses/approx_kl", approx_kl.item(), global_step)
|
323 |
+
writer.add_scalar("losses/clipfrac", np.mean(clipfracs), global_step)
|
324 |
+
writer.add_scalar("losses/explained_variance", explained_var, global_step)
|
325 |
+
print("SPS:", int(global_step / (time.time() - start_time)))
|
326 |
+
writer.add_scalar("charts/SPS", int(global_step / (time.time() - start_time)), global_step)
|
327 |
+
|
328 |
+
if args.save_model:
|
329 |
+
model_path = f"runs/{run_name}/{args.exp_name}.cleanrl_model"
|
330 |
+
torch.save(agent.state_dict(), model_path)
|
331 |
+
print(f"model saved to {model_path}")
|
332 |
+
from cleanrl_utils.evals.ppo_eval import evaluate
|
333 |
+
|
334 |
+
episodic_returns = evaluate(
|
335 |
+
model_path,
|
336 |
+
make_env,
|
337 |
+
args.env_id,
|
338 |
+
eval_episodes=10,
|
339 |
+
run_name=f"{run_name}-eval",
|
340 |
+
Model=Agent,
|
341 |
+
device=device,
|
342 |
+
gamma=args.gamma,
|
343 |
+
)
|
344 |
+
for idx, episodic_return in enumerate(episodic_returns):
|
345 |
+
writer.add_scalar("eval/episodic_return", episodic_return, idx)
|
346 |
+
|
347 |
+
if args.upload_model:
|
348 |
+
from cleanrl_utils.huggingface import push_to_hub
|
349 |
+
|
350 |
+
repo_name = f"{args.env_id}-{args.exp_name}-seed{args.seed}"
|
351 |
+
repo_id = f"{args.hf_entity}/{repo_name}" if args.hf_entity else repo_name
|
352 |
+
push_to_hub(args, episodic_returns, repo_id, "PPO", f"runs/{run_name}", f"videos/{run_name}-eval")
|
353 |
+
|
354 |
+
envs.close()
|
355 |
+
writer.close()
|
pyproject.toml
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[tool.poetry]
|
2 |
+
name = "cleanrl"
|
3 |
+
version = "1.1.0"
|
4 |
+
description = "High-quality single file implementation of Deep Reinforcement Learning algorithms with research-friendly features"
|
5 |
+
authors = ["Costa Huang <costa.huang@outlook.com>"]
|
6 |
+
packages = [
|
7 |
+
{ include = "cleanrl" },
|
8 |
+
{ include = "cleanrl_utils" },
|
9 |
+
]
|
10 |
+
keywords = ["reinforcement", "machine", "learning", "research"]
|
11 |
+
license="MIT"
|
12 |
+
readme = "README.md"
|
13 |
+
|
14 |
+
[tool.poetry.dependencies]
|
15 |
+
python = ">=3.7.1,<3.11"
|
16 |
+
tensorboard = "^2.10.0"
|
17 |
+
wandb = "^0.13.11"
|
18 |
+
gym = "0.23.1"
|
19 |
+
torch = ">=1.12.1"
|
20 |
+
stable-baselines3 = "1.2.0"
|
21 |
+
gymnasium = ">=0.28.1"
|
22 |
+
moviepy = "^1.0.3"
|
23 |
+
pygame = "2.1.0"
|
24 |
+
huggingface-hub = "^0.11.1"
|
25 |
+
rich = "<12.0"
|
26 |
+
tenacity = "^8.2.2"
|
27 |
+
|
28 |
+
ale-py = {version = "0.7.4", optional = true}
|
29 |
+
AutoROM = {extras = ["accept-rom-license"], version = "^0.4.2", optional = true}
|
30 |
+
opencv-python = {version = "^4.6.0.66", optional = true}
|
31 |
+
procgen = {version = "^0.10.7", optional = true}
|
32 |
+
pytest = {version = "^7.1.3", optional = true}
|
33 |
+
mujoco = {version = "<=2.3.3", optional = true}
|
34 |
+
imageio = {version = "^2.14.1", optional = true}
|
35 |
+
free-mujoco-py = {version = "^2.1.6", optional = true}
|
36 |
+
mkdocs-material = {version = "^8.4.3", optional = true}
|
37 |
+
markdown-include = {version = "^0.7.0", optional = true}
|
38 |
+
openrlbenchmark = {version = "^0.1.1b4", optional = true}
|
39 |
+
jax = {version = "^0.3.17", optional = true}
|
40 |
+
jaxlib = {version = "^0.3.15", optional = true}
|
41 |
+
flax = {version = "^0.6.0", optional = true}
|
42 |
+
optuna = {version = "^3.0.1", optional = true}
|
43 |
+
optuna-dashboard = {version = "^0.7.2", optional = true}
|
44 |
+
envpool = {version = "^0.6.4", optional = true}
|
45 |
+
PettingZoo = {version = "1.18.1", optional = true}
|
46 |
+
SuperSuit = {version = "3.4.0", optional = true}
|
47 |
+
multi-agent-ale-py = {version = "0.1.11", optional = true}
|
48 |
+
boto3 = {version = "^1.24.70", optional = true}
|
49 |
+
awscli = {version = "^1.25.71", optional = true}
|
50 |
+
shimmy = {version = ">=1.0.0", extras = ["dm-control"], optional = true}
|
51 |
+
|
52 |
+
[tool.poetry.group.dev.dependencies]
|
53 |
+
pre-commit = "^2.20.0"
|
54 |
+
|
55 |
+
|
56 |
+
[tool.poetry.group.isaacgym]
|
57 |
+
optional = true
|
58 |
+
[tool.poetry.group.isaacgym.dependencies]
|
59 |
+
isaacgymenvs = {git = "https://github.com/vwxyzjn/IsaacGymEnvs.git", rev = "poetry", python = ">=3.7.1,<3.10"}
|
60 |
+
isaacgym = {path = "cleanrl/ppo_continuous_action_isaacgym/isaacgym", develop = true}
|
61 |
+
|
62 |
+
|
63 |
+
[build-system]
|
64 |
+
requires = ["poetry-core"]
|
65 |
+
build-backend = "poetry.core.masonry.api"
|
66 |
+
|
67 |
+
[tool.poetry.extras]
|
68 |
+
atari = ["ale-py", "AutoROM", "opencv-python"]
|
69 |
+
procgen = ["procgen"]
|
70 |
+
plot = ["pandas", "seaborn"]
|
71 |
+
pytest = ["pytest"]
|
72 |
+
mujoco = ["mujoco", "imageio"]
|
73 |
+
mujoco_py = ["free-mujoco-py"]
|
74 |
+
jax = ["jax", "jaxlib", "flax"]
|
75 |
+
docs = ["mkdocs-material", "markdown-include", "openrlbenchmark"]
|
76 |
+
envpool = ["envpool"]
|
77 |
+
optuna = ["optuna", "optuna-dashboard"]
|
78 |
+
pettingzoo = ["PettingZoo", "SuperSuit", "multi-agent-ale-py"]
|
79 |
+
cloud = ["boto3", "awscli"]
|
80 |
+
dm_control = ["shimmy", "mujoco"]
|
81 |
+
|
82 |
+
# dependencies for algorithm variant (useful when you want to run a specific algorithm)
|
83 |
+
dqn = []
|
84 |
+
dqn_atari = ["ale-py", "AutoROM", "opencv-python"]
|
85 |
+
dqn_jax = ["jax", "jaxlib", "flax"]
|
86 |
+
dqn_atari_jax = [
|
87 |
+
"ale-py", "AutoROM", "opencv-python", # atari
|
88 |
+
"jax", "jaxlib", "flax" # jax
|
89 |
+
]
|
90 |
+
c51 = []
|
91 |
+
c51_atari = ["ale-py", "AutoROM", "opencv-python"]
|
92 |
+
c51_jax = ["jax", "jaxlib", "flax"]
|
93 |
+
c51_atari_jax = [
|
94 |
+
"ale-py", "AutoROM", "opencv-python", # atari
|
95 |
+
"jax", "jaxlib", "flax" # jax
|
96 |
+
]
|
97 |
+
ppo_atari_envpool_xla_jax_scan = [
|
98 |
+
"ale-py", "AutoROM", "opencv-python", # atari
|
99 |
+
"jax", "jaxlib", "flax", # jax
|
100 |
+
"envpool", # envpool
|
101 |
+
]
|
102 |
+
qdagger_dqn_atari_impalacnn = [
|
103 |
+
"ale-py", "AutoROM", "opencv-python"
|
104 |
+
]
|
105 |
+
qdagger_dqn_atari_jax_impalacnn = [
|
106 |
+
"ale-py", "AutoROM", "opencv-python", # atari
|
107 |
+
"jax", "jaxlib", "flax", # jax
|
108 |
+
]
|
replay.mp4
ADDED
Binary file (777 kB). View file
|
|
videos/Swimmer-v4__ppo_continuous_action__1__1697394298-eval/rl-video-episode-0.mp4
ADDED
Binary file (992 kB). View file
|
|
videos/Swimmer-v4__ppo_continuous_action__1__1697394298-eval/rl-video-episode-1.mp4
ADDED
Binary file (873 kB). View file
|
|
videos/Swimmer-v4__ppo_continuous_action__1__1697394298-eval/rl-video-episode-8.mp4
ADDED
Binary file (777 kB). View file
|
|