--- language: en tags: - pythae - reproducibility license: apache-2.0 --- This model was trained with pythae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from pythae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="clementchadebec/reproduced_wrapped_poincare_vae") ``` ## Reproducibility This trained model reproduces the results of the official implementation of [1]. | Model | Dataset | Metric | Obtained value | Reference value | |:---:|:---:|:---:|:---:|:---:| | PoincareVAE | MNIST | NLL | 101.97 (0.01) | 101.47 (0.01) | [1] Mathieu, E., Le Lan, C., Maddison, C. J., Tomioka, R., & Teh, Y. W. (2019). Continuous hierarchical representations with poincaré variational auto-encoders. Advances in neural information processing systems, 32.