File size: 1,442 Bytes
8b64cdc 0448345 790c4c6 97be00a 2b8cf41 8b64cdc 97be00a 8b64cdc 790c4c6 8b64cdc 97be00a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
from typing import Dict, List, Any
import pickle
import numpy as np
import pandas as pd
import os
import dill
class ContentBasedRecommender:
def __init__(self, train_data):
self.train_data = train_data
def predict(self, user_id, k=10):
user_books = set(self.train_data[self.train_data['user_id'] == user_id]['book_id'])
similar_books = set().union(*(self.train_data[self.train_data['book_id'] == book_id]['similar_books'].iloc[0] for book_id in user_books))
recommended_books = list(similar_books - user_books)
return np.random.choice(recommended_books, size=k, replace=False) if len(recommended_books) >= k else recommended_books
class EndpointHandler:
def __init__(self, path=""):
model_path = os.path.join(path, "model.pkl")
with open(model_path, 'rb') as f:
self.model = dill.load(f)
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
user_id = data.pop("user_id", None)
k = data.pop("k", 10) # Default to 10 if not provided
if user_id is None:
return [{"error": "user_id is required"}]
try:
recommended_books = self.model.predict(user_id, k=k)
return [{"recommended_books": recommended_books.tolist()}]
except Exception as e:
return [{"error": str(e)}]
def load_model(model_path):
handler = EndpointHandler(model_path)
return handler |