from typing import Dict, List, Any import pickle import numpy as np import pandas as pd import os class ContentBasedRecommender: def __init__(self, train_data): self.train_data = train_data def predict(self, user_id, k=10): user_books = set(self.train_data[self.train_data['user_id'] == user_id]['book_id']) similar_books = set().union(*(self.train_data[self.train_data['book_id'] == book_id]['similar_books'].iloc[0] for book_id in user_books)) recommended_books = list(similar_books - user_books) return np.random.choice(recommended_books, size=k, replace=False) if len(recommended_books) >= k else recommended_books def evaluate(self, test_data, k=10): user_ids = test_data['user_id'].unique() hit_rate, ndcg_scores = [], [] for user_id in user_ids[:100]: true_books = set(test_data[test_data['user_id'] == user_id]['book_id']) pred_books = set(self.predict(user_id, k)) hits = len(true_books & pred_books) hit_rate.append(hits / min(k, len(true_books))) dcg = sum(1 / math.log2(rank + 2) for rank, book in enumerate(pred_books) if book in true_books) idcg = sum(1 / math.log2(i + 2) for i in range(min(k, len(true_books)))) ndcg = dcg / idcg if idcg > 0 else 0 ndcg_scores.append(ndcg) return np.mean(hit_rate), np.mean(ndcg_scores) class EndpointHandler: def __init__(self, path=""): model_path = os.path.join(path, "model.pkl") with open(model_path, 'rb') as f: self.model = pickle.load(f) def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: """ data args: user_id (:obj: `str` or `int`) k (:obj: `int`, optional) Return: A :obj:`list` of :obj:`dict`: will be serialized and returned """ user_id = data.pop("user_id", None) k = data.pop("k", 10) # Default to 10 if not provided if user_id is None: return [{"error": "user_id is required"}] try: recommended_books = self.model.predict(user_id, k=k) return [{"recommended_books": recommended_books.tolist()}] except Exception as e: return [{"error": str(e)}] def load_model(model_path): handler = EndpointHandler(model_path) return handler