clfegg commited on
Commit
289dbfd
·
verified ·
0 Parent(s):

Duplicate from clfegg/image_recommender

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +38 -0
  2. README.md +3 -0
  3. handler.py +119 -0
  4. hub/.locks/models--sentence-transformers--all-MiniLM-L6-v2/53aa51172d142c89d9012cce15ae4d6cc0ca6895895114379cacb4fab128d9db.lock +0 -0
  5. hub/.locks/models--sentence-transformers--all-MiniLM-L6-v2/59d594003bf59880a884c574bf88ef7555bb0202.lock +0 -0
  6. hub/.locks/models--sentence-transformers--all-MiniLM-L6-v2/72b987fd805cfa2b58c4c8c952b274a11bfd5a00.lock +0 -0
  7. hub/.locks/models--sentence-transformers--all-MiniLM-L6-v2/8cfec92309f5626a223304af2423e332f6d31887.lock +0 -0
  8. hub/.locks/models--sentence-transformers--all-MiniLM-L6-v2/952a9b81c0bfd99800fabf352f69c7ccd46c5e43.lock +0 -0
  9. hub/.locks/models--sentence-transformers--all-MiniLM-L6-v2/c79f2b6a0cea6f4b564fed1938984bace9d30ff0.lock +0 -0
  10. hub/.locks/models--sentence-transformers--all-MiniLM-L6-v2/cb202bfe2e3c98645018a6d12f182a434c9d3e02.lock +0 -0
  11. hub/.locks/models--sentence-transformers--all-MiniLM-L6-v2/d1514c3162bbe87b343f565fadc62e6c06f04f03.lock +0 -0
  12. hub/.locks/models--sentence-transformers--all-MiniLM-L6-v2/e7b0375001f109a6b8873d756ad4f7bbb15fbaa5.lock +0 -0
  13. hub/.locks/models--sentence-transformers--all-MiniLM-L6-v2/fb140275c155a9c7c5a3b3e0e77a9e839594a938.lock +0 -0
  14. hub/.locks/models--sentence-transformers--all-MiniLM-L6-v2/fd1b291129c607e5d49799f87cb219b27f98acdf.lock +0 -0
  15. hub/.locks/models--sentence-transformers--paraphrase-multilingual-MiniLM-L12-v2/065b011b76fe98894d8975acfa28f028085fa35b.lock +0 -0
  16. hub/.locks/models--sentence-transformers--paraphrase-multilingual-MiniLM-L12-v2/0da3507018a1a1c625ff93179ff60bdb9202cc6c.lock +0 -0
  17. hub/.locks/models--sentence-transformers--paraphrase-multilingual-MiniLM-L12-v2/2c3387be76557bd40970cec13153b3bbf80407865484b209e655e5e4729076b8.lock +0 -0
  18. hub/.locks/models--sentence-transformers--paraphrase-multilingual-MiniLM-L12-v2/2ea7ad0e45a9d1d1591782ba7e29a703d0758831.lock +0 -0
  19. hub/.locks/models--sentence-transformers--paraphrase-multilingual-MiniLM-L12-v2/5fd10429389515d3e5cccdeda08cae5fea1ae82e.lock +0 -0
  20. hub/.locks/models--sentence-transformers--paraphrase-multilingual-MiniLM-L12-v2/b974b349cb2d419ada11181750a733ff82f291ad.lock +0 -0
  21. hub/.locks/models--sentence-transformers--paraphrase-multilingual-MiniLM-L12-v2/c06d5b49495f044e6380e68a60538be17a6bd5d1.lock +0 -0
  22. hub/.locks/models--sentence-transformers--paraphrase-multilingual-MiniLM-L12-v2/d1514c3162bbe87b343f565fadc62e6c06f04f03.lock +0 -0
  23. hub/.locks/models--sentence-transformers--paraphrase-multilingual-MiniLM-L12-v2/eaa086f0ffee582aeb45b36e34cdd1fe2d6de2bef61f8a559a1bbc9bd955917b.lock +0 -0
  24. hub/.locks/models--sentence-transformers--paraphrase-multilingual-MiniLM-L12-v2/f7640f94e81bb7f4f04daf1668850b38763a13d9.lock +0 -0
  25. hub/.locks/models--vikhyatk--moondream2/0204ed10c186a4c7c68f55dff8f26087a45898d6.lock +0 -0
  26. hub/.locks/models--vikhyatk--moondream2/226b0752cac7789c48f0cb3ec53eda48b7be36cc.lock +0 -0
  27. hub/.locks/models--vikhyatk--moondream2/4b1f9051605c296344c271b6d21c1e2e412a99e8.lock +0 -0
  28. hub/.locks/models--vikhyatk--moondream2/4bf7aed8ba4325d23fa7cd348d795a27f3b272682536f08aca4cdd62cde79293.lock +0 -0
  29. hub/.locks/models--vikhyatk--moondream2/5145e0895f2fe7f1ccb3eb9da69ec74ec9c680db.lock +0 -0
  30. hub/.locks/models--vikhyatk--moondream2/619b6765140cdfaa9b9d20619cae17643a28265f.lock +0 -0
  31. hub/.locks/models--vikhyatk--moondream2/6ac7b4364eba1fdd1d3981e4669aed01a2b0cec4.lock +0 -0
  32. hub/.locks/models--vikhyatk--moondream2/7debb4784a7d53328d4d021fc46314bec4af3833.lock +0 -0
  33. hub/.locks/models--vikhyatk--moondream2/84ef7fb594b5c0979e48bdeddb60a0adef33df0b.lock +0 -0
  34. hub/.locks/models--vikhyatk--moondream2/923ea295017e96fb15774a11a903f99adff3bd4b.lock +0 -0
  35. hub/.locks/models--vikhyatk--moondream2/98dd65a59581dac66a3601da9aadd1534f019006.lock +0 -0
  36. hub/.locks/models--vikhyatk--moondream2/a4878a2253d32f2dcd950cde16ebedffb9644ae6.lock +0 -0
  37. hub/.locks/models--vikhyatk--moondream2/ae1ab764382e24c65d906c16fba36650b634426a.lock +0 -0
  38. hub/.locks/models--vikhyatk--moondream2/b93162eb8252d2d937a69f17971c76b8be87aedd.lock +0 -0
  39. hub/.locks/models--vikhyatk--moondream2/c1148447551675ea739c440ee3e247df9f354d8f.lock +0 -0
  40. hub/models--sentence-transformers--all-MiniLM-L6-v2/.no_exist/fa97f6e7cb1a59073dff9e6b13e2715cf7475ac9/adapter_config.json +0 -0
  41. hub/models--sentence-transformers--all-MiniLM-L6-v2/.no_exist/fa97f6e7cb1a59073dff9e6b13e2715cf7475ac9/added_tokens.json +0 -0
  42. hub/models--sentence-transformers--all-MiniLM-L6-v2/refs/main +1 -0
  43. hub/models--sentence-transformers--all-MiniLM-L6-v2/snapshots/fa97f6e7cb1a59073dff9e6b13e2715cf7475ac9/1_Pooling/config.json +7 -0
  44. hub/models--sentence-transformers--all-MiniLM-L6-v2/snapshots/fa97f6e7cb1a59073dff9e6b13e2715cf7475ac9/README.md +177 -0
  45. hub/models--sentence-transformers--all-MiniLM-L6-v2/snapshots/fa97f6e7cb1a59073dff9e6b13e2715cf7475ac9/config.json +24 -0
  46. hub/models--sentence-transformers--all-MiniLM-L6-v2/snapshots/fa97f6e7cb1a59073dff9e6b13e2715cf7475ac9/config_sentence_transformers.json +7 -0
  47. hub/models--sentence-transformers--all-MiniLM-L6-v2/snapshots/fa97f6e7cb1a59073dff9e6b13e2715cf7475ac9/model.safetensors +3 -0
  48. hub/models--sentence-transformers--all-MiniLM-L6-v2/snapshots/fa97f6e7cb1a59073dff9e6b13e2715cf7475ac9/modules.json +20 -0
  49. hub/models--sentence-transformers--all-MiniLM-L6-v2/snapshots/fa97f6e7cb1a59073dff9e6b13e2715cf7475ac9/sentence_bert_config.json +4 -0
  50. hub/models--sentence-transformers--all-MiniLM-L6-v2/snapshots/fa97f6e7cb1a59073dff9e6b13e2715cf7475ac9/special_tokens_map.json +1 -0
.gitattributes ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ hub/models--sentence-transformers--all-MiniLM-L6-v2/blobs/53aa51172d142c89d9012cce15ae4d6cc0ca6895895114379cacb4fab128d9db filter=lfs diff=lfs merge=lfs -text
37
+ hub/models--sentence-transformers--paraphrase-multilingual-MiniLM-L12-v2/blobs/eaa086f0ffee582aeb45b36e34cdd1fe2d6de2bef61f8a559a1bbc9bd955917b filter=lfs diff=lfs merge=lfs -text
38
+ hub/models--vikhyatk--moondream2/blobs/4bf7aed8ba4325d23fa7cd348d795a27f3b272682536f08aca4cdd62cde79293 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ ---
2
+ license: gpl-3.0
3
+ ---
handler.py ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ current_dir = os.getcwd()
3
+ os.environ['HF_HOME'] = os.path.join(current_dir)
4
+ from sentence_transformers import SentenceTransformer, util
5
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
6
+ from PIL import Image
7
+ from serpapi import GoogleSearch
8
+ from keybert import KeyBERT
9
+ from typing import Dict, Any, List
10
+ import base64
11
+ import torch
12
+ model_id = "vikhyatk/moondream2"
13
+ revision = "2024-08-26"
14
+ model = AutoModelForCausalLM.from_pretrained(
15
+ model_id, trust_remote_code=True, revision=revision
16
+ )
17
+
18
+ model.to('cuda')
19
+ tokenizer = AutoTokenizer.from_pretrained(model_id, revision=revision)
20
+
21
+ model_name = "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"
22
+ sentence_model = SentenceTransformer(model_name, device='cuda')
23
+
24
+ class ProductSearcher:
25
+ def __init__(self, user_input, image_path):
26
+ self.user_input = user_input
27
+ self.image_path = image_path
28
+ self.predefined_questions = [
29
+ "tôi muốn mua sản phẩm này",
30
+ "tôi muốn thông tin về sản phẩm",
31
+ "tôi muốn biết giá cái này"
32
+ ]
33
+ self.prompts = [
34
+ "Descibe product in image with it color. Only answer in one sentence"
35
+ "Describe the product in detail and provide information about the product. If you don't know the product, you can describe the image",
36
+ "Estimate the price of the product and provide a detailed description of the product"
37
+ ]
38
+ self.description = ''
39
+ self.keyphrases = []
40
+ self.kw_model= KeyBERT()
41
+
42
+
43
+ def get_most_similar_sentence(self):
44
+ user_input_embedding = sentence_model.encode(self.user_input)
45
+ predefined_embeddings = sentence_model.encode(self.predefined_questions)
46
+ similarity_scores = util.pytorch_cos_sim(user_input_embedding, predefined_embeddings)
47
+ most_similar_index = similarity_scores.argmax().item()
48
+ return self.prompts[most_similar_index]
49
+
50
+ def generate_description(self):
51
+ prompt = self.get_most_similar_sentence()
52
+ image = Image.open(self.image_path)
53
+
54
+ enc_image = model.encode_image(image)
55
+ self.description = model.answer_question(enc_image, prompt, tokenizer)
56
+ del enc_image
57
+
58
+ def extract_keyphrases(self):
59
+ self.keyphrases = self.kw_model.extract_keywords(self.description)
60
+ def search_products(self, k=3):
61
+ # Concatenate keyphrases to form a question
62
+ q = [keyword[0] for keyword in self.keyphrases if keyword[0] != 'image']
63
+ question = " ".join(q)
64
+ search = GoogleSearch({
65
+ "engine": "google",
66
+ # "q": self.keyphrases[0]['word'],
67
+ "q":question,
68
+ "tbm": "shop",
69
+ "api_key": os.environ["API_KEY"]
70
+ })
71
+ results = search.get_dict()
72
+ # Extract top k products from the search results
73
+ products = results.get('shopping_results', [])[:k]
74
+ return products
75
+
76
+ def run(self, k=3):
77
+ self.generate_description()
78
+ self.extract_keyphrases()
79
+ results = self.search_products(k)
80
+ return results
81
+
82
+
83
+
84
+ class EndpointHandler:
85
+ def __init__(self,path=""):
86
+ pass
87
+
88
+ def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
89
+ """
90
+ data args:
91
+ inputs (:obj: dict): A dictionary containing the inputs.
92
+ message (:obj: str): The user message.
93
+ image (:obj: str): The base64-encoded image content.
94
+ Return:
95
+ A list of dictionaries containing the product search results.
96
+ """
97
+ inputs = data.get("inputs", {})
98
+ message = inputs.get("message")
99
+ image_content = inputs.get("image")
100
+
101
+ # Decode the base64-encoded image content
102
+ image_bytes = base64.b64decode(image_content)
103
+
104
+ # Save the image to a temporary file
105
+ image_path = "input/temp_image.jpg"
106
+ os.makedirs("input", exist_ok=True)
107
+ with open(image_path, "wb") as f:
108
+ f.write(image_bytes)
109
+
110
+ # Initialize ProductSearcher with the message and image path
111
+ searcher = ProductSearcher(message, image_path)
112
+
113
+ # Run the search and get results
114
+ results = searcher.run(k=3)
115
+
116
+ # Return the search results
117
+ return results
118
+
119
+
hub/.locks/models--sentence-transformers--all-MiniLM-L6-v2/53aa51172d142c89d9012cce15ae4d6cc0ca6895895114379cacb4fab128d9db.lock ADDED
File without changes
hub/.locks/models--sentence-transformers--all-MiniLM-L6-v2/59d594003bf59880a884c574bf88ef7555bb0202.lock ADDED
File without changes
hub/.locks/models--sentence-transformers--all-MiniLM-L6-v2/72b987fd805cfa2b58c4c8c952b274a11bfd5a00.lock ADDED
File without changes
hub/.locks/models--sentence-transformers--all-MiniLM-L6-v2/8cfec92309f5626a223304af2423e332f6d31887.lock ADDED
File without changes
hub/.locks/models--sentence-transformers--all-MiniLM-L6-v2/952a9b81c0bfd99800fabf352f69c7ccd46c5e43.lock ADDED
File without changes
hub/.locks/models--sentence-transformers--all-MiniLM-L6-v2/c79f2b6a0cea6f4b564fed1938984bace9d30ff0.lock ADDED
File without changes
hub/.locks/models--sentence-transformers--all-MiniLM-L6-v2/cb202bfe2e3c98645018a6d12f182a434c9d3e02.lock ADDED
File without changes
hub/.locks/models--sentence-transformers--all-MiniLM-L6-v2/d1514c3162bbe87b343f565fadc62e6c06f04f03.lock ADDED
File without changes
hub/.locks/models--sentence-transformers--all-MiniLM-L6-v2/e7b0375001f109a6b8873d756ad4f7bbb15fbaa5.lock ADDED
File without changes
hub/.locks/models--sentence-transformers--all-MiniLM-L6-v2/fb140275c155a9c7c5a3b3e0e77a9e839594a938.lock ADDED
File without changes
hub/.locks/models--sentence-transformers--all-MiniLM-L6-v2/fd1b291129c607e5d49799f87cb219b27f98acdf.lock ADDED
File without changes
hub/.locks/models--sentence-transformers--paraphrase-multilingual-MiniLM-L12-v2/065b011b76fe98894d8975acfa28f028085fa35b.lock ADDED
File without changes
hub/.locks/models--sentence-transformers--paraphrase-multilingual-MiniLM-L12-v2/0da3507018a1a1c625ff93179ff60bdb9202cc6c.lock ADDED
File without changes
hub/.locks/models--sentence-transformers--paraphrase-multilingual-MiniLM-L12-v2/2c3387be76557bd40970cec13153b3bbf80407865484b209e655e5e4729076b8.lock ADDED
File without changes
hub/.locks/models--sentence-transformers--paraphrase-multilingual-MiniLM-L12-v2/2ea7ad0e45a9d1d1591782ba7e29a703d0758831.lock ADDED
File without changes
hub/.locks/models--sentence-transformers--paraphrase-multilingual-MiniLM-L12-v2/5fd10429389515d3e5cccdeda08cae5fea1ae82e.lock ADDED
File without changes
hub/.locks/models--sentence-transformers--paraphrase-multilingual-MiniLM-L12-v2/b974b349cb2d419ada11181750a733ff82f291ad.lock ADDED
File without changes
hub/.locks/models--sentence-transformers--paraphrase-multilingual-MiniLM-L12-v2/c06d5b49495f044e6380e68a60538be17a6bd5d1.lock ADDED
File without changes
hub/.locks/models--sentence-transformers--paraphrase-multilingual-MiniLM-L12-v2/d1514c3162bbe87b343f565fadc62e6c06f04f03.lock ADDED
File without changes
hub/.locks/models--sentence-transformers--paraphrase-multilingual-MiniLM-L12-v2/eaa086f0ffee582aeb45b36e34cdd1fe2d6de2bef61f8a559a1bbc9bd955917b.lock ADDED
File without changes
hub/.locks/models--sentence-transformers--paraphrase-multilingual-MiniLM-L12-v2/f7640f94e81bb7f4f04daf1668850b38763a13d9.lock ADDED
File without changes
hub/.locks/models--vikhyatk--moondream2/0204ed10c186a4c7c68f55dff8f26087a45898d6.lock ADDED
File without changes
hub/.locks/models--vikhyatk--moondream2/226b0752cac7789c48f0cb3ec53eda48b7be36cc.lock ADDED
File without changes
hub/.locks/models--vikhyatk--moondream2/4b1f9051605c296344c271b6d21c1e2e412a99e8.lock ADDED
File without changes
hub/.locks/models--vikhyatk--moondream2/4bf7aed8ba4325d23fa7cd348d795a27f3b272682536f08aca4cdd62cde79293.lock ADDED
File without changes
hub/.locks/models--vikhyatk--moondream2/5145e0895f2fe7f1ccb3eb9da69ec74ec9c680db.lock ADDED
File without changes
hub/.locks/models--vikhyatk--moondream2/619b6765140cdfaa9b9d20619cae17643a28265f.lock ADDED
File without changes
hub/.locks/models--vikhyatk--moondream2/6ac7b4364eba1fdd1d3981e4669aed01a2b0cec4.lock ADDED
File without changes
hub/.locks/models--vikhyatk--moondream2/7debb4784a7d53328d4d021fc46314bec4af3833.lock ADDED
File without changes
hub/.locks/models--vikhyatk--moondream2/84ef7fb594b5c0979e48bdeddb60a0adef33df0b.lock ADDED
File without changes
hub/.locks/models--vikhyatk--moondream2/923ea295017e96fb15774a11a903f99adff3bd4b.lock ADDED
File without changes
hub/.locks/models--vikhyatk--moondream2/98dd65a59581dac66a3601da9aadd1534f019006.lock ADDED
File without changes
hub/.locks/models--vikhyatk--moondream2/a4878a2253d32f2dcd950cde16ebedffb9644ae6.lock ADDED
File without changes
hub/.locks/models--vikhyatk--moondream2/ae1ab764382e24c65d906c16fba36650b634426a.lock ADDED
File without changes
hub/.locks/models--vikhyatk--moondream2/b93162eb8252d2d937a69f17971c76b8be87aedd.lock ADDED
File without changes
hub/.locks/models--vikhyatk--moondream2/c1148447551675ea739c440ee3e247df9f354d8f.lock ADDED
File without changes
hub/models--sentence-transformers--all-MiniLM-L6-v2/.no_exist/fa97f6e7cb1a59073dff9e6b13e2715cf7475ac9/adapter_config.json ADDED
File without changes
hub/models--sentence-transformers--all-MiniLM-L6-v2/.no_exist/fa97f6e7cb1a59073dff9e6b13e2715cf7475ac9/added_tokens.json ADDED
File without changes
hub/models--sentence-transformers--all-MiniLM-L6-v2/refs/main ADDED
@@ -0,0 +1 @@
 
 
1
+ fa97f6e7cb1a59073dff9e6b13e2715cf7475ac9
hub/models--sentence-transformers--all-MiniLM-L6-v2/snapshots/fa97f6e7cb1a59073dff9e6b13e2715cf7475ac9/1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
hub/models--sentence-transformers--all-MiniLM-L6-v2/snapshots/fa97f6e7cb1a59073dff9e6b13e2715cf7475ac9/README.md ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ license: apache-2.0
4
+ library_name: sentence-transformers
5
+ tags:
6
+ - sentence-transformers
7
+ - feature-extraction
8
+ - sentence-similarity
9
+ - transformers
10
+ datasets:
11
+ - s2orc
12
+ - flax-sentence-embeddings/stackexchange_xml
13
+ - ms_marco
14
+ - gooaq
15
+ - yahoo_answers_topics
16
+ - code_search_net
17
+ - search_qa
18
+ - eli5
19
+ - snli
20
+ - multi_nli
21
+ - wikihow
22
+ - natural_questions
23
+ - trivia_qa
24
+ - embedding-data/sentence-compression
25
+ - embedding-data/flickr30k-captions
26
+ - embedding-data/altlex
27
+ - embedding-data/simple-wiki
28
+ - embedding-data/QQP
29
+ - embedding-data/SPECTER
30
+ - embedding-data/PAQ_pairs
31
+ - embedding-data/WikiAnswers
32
+ pipeline_tag: sentence-similarity
33
+ ---
34
+
35
+
36
+ # all-MiniLM-L6-v2
37
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.
38
+
39
+ ## Usage (Sentence-Transformers)
40
+ Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
41
+
42
+ ```
43
+ pip install -U sentence-transformers
44
+ ```
45
+
46
+ Then you can use the model like this:
47
+ ```python
48
+ from sentence_transformers import SentenceTransformer
49
+ sentences = ["This is an example sentence", "Each sentence is converted"]
50
+
51
+ model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
52
+ embeddings = model.encode(sentences)
53
+ print(embeddings)
54
+ ```
55
+
56
+ ## Usage (HuggingFace Transformers)
57
+ Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
58
+
59
+ ```python
60
+ from transformers import AutoTokenizer, AutoModel
61
+ import torch
62
+ import torch.nn.functional as F
63
+
64
+ #Mean Pooling - Take attention mask into account for correct averaging
65
+ def mean_pooling(model_output, attention_mask):
66
+ token_embeddings = model_output[0] #First element of model_output contains all token embeddings
67
+ input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
68
+ return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
69
+
70
+
71
+ # Sentences we want sentence embeddings for
72
+ sentences = ['This is an example sentence', 'Each sentence is converted']
73
+
74
+ # Load model from HuggingFace Hub
75
+ tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
76
+ model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
77
+
78
+ # Tokenize sentences
79
+ encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
80
+
81
+ # Compute token embeddings
82
+ with torch.no_grad():
83
+ model_output = model(**encoded_input)
84
+
85
+ # Perform pooling
86
+ sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
87
+
88
+ # Normalize embeddings
89
+ sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)
90
+
91
+ print("Sentence embeddings:")
92
+ print(sentence_embeddings)
93
+ ```
94
+
95
+ ## Evaluation Results
96
+
97
+ For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/all-MiniLM-L6-v2)
98
+
99
+ ------
100
+
101
+ ## Background
102
+
103
+ The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised
104
+ contrastive learning objective. We used the pretrained [`nreimers/MiniLM-L6-H384-uncased`](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased) model and fine-tuned in on a
105
+ 1B sentence pairs dataset. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset.
106
+
107
+ We developed this model during the
108
+ [Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104),
109
+ organized by Hugging Face. We developed this model as part of the project:
110
+ [Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as intervention from Googles Flax, JAX, and Cloud team member about efficient deep learning frameworks.
111
+
112
+ ## Intended uses
113
+
114
+ Our model is intended to be used as a sentence and short paragraph encoder. Given an input text, it outputs a vector which captures
115
+ the semantic information. The sentence vector may be used for information retrieval, clustering or sentence similarity tasks.
116
+
117
+ By default, input text longer than 256 word pieces is truncated.
118
+
119
+
120
+ ## Training procedure
121
+
122
+ ### Pre-training
123
+
124
+ We use the pretrained [`nreimers/MiniLM-L6-H384-uncased`](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased) model. Please refer to the model card for more detailed information about the pre-training procedure.
125
+
126
+ ### Fine-tuning
127
+
128
+ We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch.
129
+ We then apply the cross entropy loss by comparing with true pairs.
130
+
131
+ #### Hyper parameters
132
+
133
+ We trained our model on a TPU v3-8. We train the model during 100k steps using a batch size of 1024 (128 per TPU core).
134
+ We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with
135
+ a 2e-5 learning rate. The full training script is accessible in this current repository: `train_script.py`.
136
+
137
+ #### Training data
138
+
139
+ We use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences.
140
+ We sampled each dataset given a weighted probability which configuration is detailed in the `data_config.json` file.
141
+
142
+
143
+ | Dataset | Paper | Number of training tuples |
144
+ |--------------------------------------------------------|:----------------------------------------:|:--------------------------:|
145
+ | [Reddit comments (2015-2018)](https://github.com/PolyAI-LDN/conversational-datasets/tree/master/reddit) | [paper](https://arxiv.org/abs/1904.06472) | 726,484,430 |
146
+ | [S2ORC](https://github.com/allenai/s2orc) Citation pairs (Abstracts) | [paper](https://aclanthology.org/2020.acl-main.447/) | 116,288,806 |
147
+ | [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) Duplicate question pairs | [paper](https://doi.org/10.1145/2623330.2623677) | 77,427,422 |
148
+ | [PAQ](https://github.com/facebookresearch/PAQ) (Question, Answer) pairs | [paper](https://arxiv.org/abs/2102.07033) | 64,371,441 |
149
+ | [S2ORC](https://github.com/allenai/s2orc) Citation pairs (Titles) | [paper](https://aclanthology.org/2020.acl-main.447/) | 52,603,982 |
150
+ | [S2ORC](https://github.com/allenai/s2orc) (Title, Abstract) | [paper](https://aclanthology.org/2020.acl-main.447/) | 41,769,185 |
151
+ | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Body) pairs | - | 25,316,456 |
152
+ | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title+Body, Answer) pairs | - | 21,396,559 |
153
+ | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Answer) pairs | - | 21,396,559 |
154
+ | [MS MARCO](https://microsoft.github.io/msmarco/) triplets | [paper](https://doi.org/10.1145/3404835.3462804) | 9,144,553 |
155
+ | [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) | [paper](https://arxiv.org/pdf/2104.08727.pdf) | 3,012,496 |
156
+ | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Answer) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 1,198,260 |
157
+ | [Code Search](https://huggingface.co/datasets/code_search_net) | - | 1,151,414 |
158
+ | [COCO](https://cocodataset.org/#home) Image captions | [paper](https://link.springer.com/chapter/10.1007%2F978-3-319-10602-1_48) | 828,395|
159
+ | [SPECTER](https://github.com/allenai/specter) citation triplets | [paper](https://doi.org/10.18653/v1/2020.acl-main.207) | 684,100 |
160
+ | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Question, Answer) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 681,164 |
161
+ | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Question) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 659,896 |
162
+ | [SearchQA](https://huggingface.co/datasets/search_qa) | [paper](https://arxiv.org/abs/1704.05179) | 582,261 |
163
+ | [Eli5](https://huggingface.co/datasets/eli5) | [paper](https://doi.org/10.18653/v1/p19-1346) | 325,475 |
164
+ | [Flickr 30k](https://shannon.cs.illinois.edu/DenotationGraph/) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/229/33) | 317,695 |
165
+ | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (titles) | | 304,525 |
166
+ | AllNLI ([SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) | [paper SNLI](https://doi.org/10.18653/v1/d15-1075), [paper MultiNLI](https://doi.org/10.18653/v1/n18-1101) | 277,230 |
167
+ | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (bodies) | | 250,519 |
168
+ | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (titles+bodies) | | 250,460 |
169
+ | [Sentence Compression](https://github.com/google-research-datasets/sentence-compression) | [paper](https://www.aclweb.org/anthology/D13-1155/) | 180,000 |
170
+ | [Wikihow](https://github.com/pvl/wikihow_pairs_dataset) | [paper](https://arxiv.org/abs/1810.09305) | 128,542 |
171
+ | [Altlex](https://github.com/chridey/altlex/) | [paper](https://aclanthology.org/P16-1135.pdf) | 112,696 |
172
+ | [Quora Question Triplets](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) | - | 103,663 |
173
+ | [Simple Wikipedia](https://cs.pomona.edu/~dkauchak/simplification/) | [paper](https://www.aclweb.org/anthology/P11-2117/) | 102,225 |
174
+ | [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/1455) | 100,231 |
175
+ | [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) | [paper](https://aclanthology.org/P18-2124.pdf) | 87,599 |
176
+ | [TriviaQA](https://huggingface.co/datasets/trivia_qa) | - | 73,346 |
177
+ | **Total** | | **1,170,060,424** |
hub/models--sentence-transformers--all-MiniLM-L6-v2/snapshots/fa97f6e7cb1a59073dff9e6b13e2715cf7475ac9/config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "nreimers/MiniLM-L6-H384-uncased",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "gradient_checkpointing": false,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 1536,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 6,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "transformers_version": "4.8.2",
21
+ "type_vocab_size": 2,
22
+ "use_cache": true,
23
+ "vocab_size": 30522
24
+ }
hub/models--sentence-transformers--all-MiniLM-L6-v2/snapshots/fa97f6e7cb1a59073dff9e6b13e2715cf7475ac9/config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.6.1",
5
+ "pytorch": "1.8.1"
6
+ }
7
+ }
hub/models--sentence-transformers--all-MiniLM-L6-v2/snapshots/fa97f6e7cb1a59073dff9e6b13e2715cf7475ac9/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:53aa51172d142c89d9012cce15ae4d6cc0ca6895895114379cacb4fab128d9db
3
+ size 90868376
hub/models--sentence-transformers--all-MiniLM-L6-v2/snapshots/fa97f6e7cb1a59073dff9e6b13e2715cf7475ac9/modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
hub/models--sentence-transformers--all-MiniLM-L6-v2/snapshots/fa97f6e7cb1a59073dff9e6b13e2715cf7475ac9/sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
hub/models--sentence-transformers--all-MiniLM-L6-v2/snapshots/fa97f6e7cb1a59073dff9e6b13e2715cf7475ac9/special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}