Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,112 @@
|
|
1 |
---
|
2 |
license: wtfpl
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: wtfpl
|
3 |
+
datasets:
|
4 |
+
- migtissera/Synthia-v1.3
|
5 |
+
language:
|
6 |
+
- en
|
7 |
---
|
8 |
+
|
9 |
+
|
10 |
+
# MAMBA (2.8B) 🐍 fine-tuned on Synthia-v1.3
|
11 |
+
|
12 |
+
<div style="text-align:center;width:250px;height:250px;">
|
13 |
+
<img src="https://huggingface.co/clibrain/mamba-2.8b-instruct-openhermes/resolve/main/mamba_hermes_logo_1.png?download=true" alt="mamba-hermes logo"">
|
14 |
+
</div>
|
15 |
+
|
16 |
+
Model Card is still WIP!
|
17 |
+
|
18 |
+
|
19 |
+
## Base model info
|
20 |
+
|
21 |
+
Mamba is a new state space model architecture showing promising performance on information-dense data such as language modeling, where previous subquadratic models fall short of Transformers.
|
22 |
+
It is based on the line of progress on [structured state space models](https://github.com/state-spaces/s4),
|
23 |
+
with an efficient hardware-aware design and implementation in the spirit of [FlashAttention](https://github.com/Dao-AILab/flash-attention).
|
24 |
+
|
25 |
+
## Dataset info
|
26 |
+
|
27 |
+
The OpenHermes dataset is composed of 242,000 entries of primarily GPT-4 generated data, from open datasets across the AI landscape, including:
|
28 |
+
|
29 |
+
OpenHermes 13B is the first fine tune of the Hermes dataset that has a fully open source dataset!
|
30 |
+
|
31 |
+
OpenHermes was trained on 242,000 entries of primarily GPT-4 generated data, from open datasets across the AI landscape, including:
|
32 |
+
|
33 |
+
- GPTeacher - General Instruct, Roleplay v1, Roleplay v2, and Code Instruct Datasets, by Teknium
|
34 |
+
- WizardLM (v1, evol_instruct 70k), by WizardLM Team/nlpxucan
|
35 |
+
- Airoboros GPT-4 (v1.0), by JonDurbin
|
36 |
+
- Camel-AI's domain expert datasets, by the Camel-AI Team
|
37 |
+
- CodeAlpaca, by Sahil2801
|
38 |
+
- GPT4-LLM and Unnatural Instructions, by Microsoft
|
39 |
+
Filtering included removal of OpenAI refusals, disclaimers, and "As an AI" type examples and more
|
40 |
+
The base dataset mix is identical to the original Nous-Hermes', minus the Nous-Instruct and PDACTL datasets which were private datasets.
|
41 |
+
|
42 |
+
## Usage
|
43 |
+
|
44 |
+
```sh
|
45 |
+
pip install torch==2.1.0 transformers==4.35.0 causal-conv1d==1.0.0 mamba-ssm==1.0.1
|
46 |
+
```
|
47 |
+
|
48 |
+
```py
|
49 |
+
import torch
|
50 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
51 |
+
from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel
|
52 |
+
|
53 |
+
CHAT_TEMPLATE_ID = "HuggingFaceH4/zephyr-7b-beta"
|
54 |
+
|
55 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
56 |
+
model_name = "clibrain/mamba-2.8b-ft-synthia-v1.3"
|
57 |
+
|
58 |
+
eos_token = "<|endoftext|>"
|
59 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
60 |
+
tokenizer.eos_token = eos_token
|
61 |
+
tokenizer.pad_token = tokenizer.eos_token
|
62 |
+
tokenizer.chat_template = AutoTokenizer.from_pretrained(CHAT_TEMPLATE_ID).chat_template
|
63 |
+
|
64 |
+
model = MambaLMHeadModel.from_pretrained(
|
65 |
+
model_name, device=device, dtype=torch.float16)
|
66 |
+
|
67 |
+
messages = []
|
68 |
+
prompt = "Tell me 5 sites to visit in Spain"
|
69 |
+
messages.append(dict(role="user", content=prompt))
|
70 |
+
|
71 |
+
input_ids = tokenizer.apply_chat_template(
|
72 |
+
messages, return_tensors="pt", add_generation_prompt=True
|
73 |
+
).to(device)
|
74 |
+
|
75 |
+
out = model.generate(
|
76 |
+
input_ids=input_ids,
|
77 |
+
max_length=2000,
|
78 |
+
temperature=0.9,
|
79 |
+
top_p=0.7,
|
80 |
+
eos_token_id=tokenizer.eos_token_id,
|
81 |
+
)
|
82 |
+
|
83 |
+
decoded = tokenizer.batch_decode(out)
|
84 |
+
assistant_message = (
|
85 |
+
decoded[0].split("<|assistant|>\n")[-1].replace(eos, "")
|
86 |
+
)
|
87 |
+
|
88 |
+
print(assistant_message)
|
89 |
+
```
|
90 |
+
|
91 |
+
|
92 |
+
## Gradio Demo
|
93 |
+
|
94 |
+
```sh
|
95 |
+
git clone https://github.com/mrm8488/mamba-chat.git
|
96 |
+
cd mamba-chat
|
97 |
+
|
98 |
+
pip install -r requirements.txt
|
99 |
+
pip install -q gradio==4.8.0
|
100 |
+
|
101 |
+
python app.py \
|
102 |
+
--model clibrain/mamba-2.8b-ft-synthia-v1.3 \
|
103 |
+
--share
|
104 |
+
```
|
105 |
+
## Evaluations
|
106 |
+
|
107 |
+
Coming soon!
|
108 |
+
|
109 |
+
|
110 |
+
## Acknowledgments
|
111 |
+
|
112 |
+
Thanks to [mamba-chat](https://github.com/havenhq/mamba-chat/tree/main) for heavily inspiring our work
|