--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - precision - recall model-index: - name: dutch_genre_classifier results: [] language: - nl pipeline_tag: text-classification widget: - text: We zullen zien bij de #verkiezingen2024 example_title: tw - text: Meneer de minister, stemt u voor of tegen dit wetsvoorstel? example_title: par - text: De politie heeft vannacht meermaals moeten optreden tegen relschoppers die vuurwerk richting dienstverleners afschoten. Daarbij zijn 5 personen gearresteerd. example_title: nws --- # dutch_genre_classifier This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1404 - Precision: 0.9713 - Recall: 0.9707 - Fscore: 0.9707 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - num_epochs: 2.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0