File size: 2,268 Bytes
a8f9c20 95f69b9 a8f9c20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: whisper-small-sp
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-small-sp
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3776
- Wer: 20.8004
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|
| 2.2671 | 0.13 | 1000 | 2.2108 | 76.2667 |
| 1.4465 | 0.26 | 2000 | 1.6057 | 67.8753 |
| 1.0997 | 0.39 | 3000 | 1.1928 | 54.2433 |
| 0.9389 | 0.52 | 4000 | 1.0020 | 47.8307 |
| 0.7881 | 0.65 | 5000 | 0.8933 | 46.0046 |
| 0.7596 | 0.78 | 6000 | 0.7721 | 38.5595 |
| 0.5678 | 0.91 | 7000 | 0.6903 | 36.2897 |
| 0.4412 | 1.04 | 8000 | 0.6476 | 32.7473 |
| 0.4239 | 1.17 | 9000 | 0.5973 | 30.8142 |
| 0.3935 | 1.3 | 10000 | 0.5444 | 29.0208 |
| 0.3307 | 1.43 | 11000 | 0.5024 | 27.0434 |
| 0.2937 | 1.56 | 12000 | 0.4608 | 24.7318 |
| 0.2471 | 1.69 | 13000 | 0.4259 | 22.8940 |
| 0.2357 | 1.82 | 14000 | 0.3936 | 21.6018 |
| 0.2292 | 1.95 | 15000 | 0.3776 | 20.8004 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu117
- Datasets 2.7.1
- Tokenizers 0.13.2
|