--- license: llama3.1 language: - en inference: false fine-tuning: false tags: - nvidia - llama3.1 - reward model - mlx - mlx-my-repo datasets: - nvidia/HelpSteer2 base_model: nvidia/Llama-3.1-Nemotron-70B-Reward-HF --- # cnfusion/Llama-3.1-Nemotron-70B-Reward-HF-Q2-mlx The Model [cnfusion/Llama-3.1-Nemotron-70B-Reward-HF-Q2-mlx](https://huggingface.co/cnfusion/Llama-3.1-Nemotron-70B-Reward-HF-Q2-mlx) was converted to MLX format from [nvidia/Llama-3.1-Nemotron-70B-Reward-HF](https://huggingface.co/nvidia/Llama-3.1-Nemotron-70B-Reward-HF) using mlx-lm version **0.19.2**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("cnfusion/Llama-3.1-Nemotron-70B-Reward-HF-Q2-mlx") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```