Create modeling_codesage.py
Browse files- modeling_codesage.py +46 -0
modeling_codesage.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding=utf-8
|
3 |
+
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
|
4 |
+
|
5 |
+
from transformers.configuration_utils import PretrainedConfig
|
6 |
+
|
7 |
+
|
8 |
+
class CodeSageConfig(PretrainedConfig):
|
9 |
+
model_type = "bert"
|
10 |
+
|
11 |
+
def __init__(
|
12 |
+
self,
|
13 |
+
vocab_size=50257,
|
14 |
+
max_position_embeddings=1024,
|
15 |
+
hidden_size=768,
|
16 |
+
num_hidden_layers=12,
|
17 |
+
num_attention_heads=12,
|
18 |
+
intermediate_size=3072,
|
19 |
+
activation_function="gelu_new",
|
20 |
+
residual_dropout_prob=0.1,
|
21 |
+
embedding_dropout_prob=0.1,
|
22 |
+
attention_dropout_prob=0.1,
|
23 |
+
layer_norm_epsilon=1e-5,
|
24 |
+
initializer_range=0.02,
|
25 |
+
position_embedding_type='absolute',
|
26 |
+
bos_token_id=0,
|
27 |
+
eos_token_id=0,
|
28 |
+
pad_token_id=49153,
|
29 |
+
**kwargs
|
30 |
+
):
|
31 |
+
self.vocab_size = vocab_size
|
32 |
+
self.max_position_embeddings = max_position_embeddings
|
33 |
+
self.hidden_size = hidden_size
|
34 |
+
self.num_hidden_layers = num_hidden_layers
|
35 |
+
self.num_attention_heads = num_attention_heads
|
36 |
+
self.intermediate_size = intermediate_size
|
37 |
+
assert 'gelu' in activation_function
|
38 |
+
self.activation_function = activation_function
|
39 |
+
self.residual_dropout_prob = residual_dropout_prob
|
40 |
+
self.embedding_dropout_prob = embedding_dropout_prob
|
41 |
+
self.attention_dropout_prob = attention_dropout_prob
|
42 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
43 |
+
self.initializer_range = initializer_range
|
44 |
+
self.position_embedding_type = position_embedding_type
|
45 |
+
|
46 |
+
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|