File size: 21,473 Bytes
3554094 8eab17a 3554094 8eab17a 3554094 8eab17a e751b10 d94b7fa 94232af 7b535c9 94232af d94b7fa 8eab17a 3554094 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 |
---
license: apache-2.0
base_model: mistralai/Mistral-Nemo-Base-2407
tags:
- generated_from_trainer
- axolotl
datasets:
- cognitivecomputations/Dolphin-2.9
- teknium/OpenHermes-2.5
- m-a-p/CodeFeedback-Filtered-Instruction
- cognitivecomputations/dolphin-coder
- cognitivecomputations/samantha-data
- microsoft/orca-math-word-problems-200k
- Locutusque/function-calling-chatml
- internlm/Agent-FLAN
---
# Dolphin 2.9.3 Mistral Nemo 12b 🐬
Curated and trained by Eric Hartford and Cognitive Computations
[![Discord](https://img.shields.io/discord/1156064224225808488?logo=Discord&logoColor=%23ffffff&label=Discord&link=https%3A%2F%2Fdiscord.gg%2FtCMkMDDHwm)](https://discord.gg/h3K4XGj2RH)
Discord: https://discord.gg/h3K4XGj2RH
<img src="https://cdn-uploads.huggingface.co/production/uploads/63111b2d88942700629f5771/ldkN1J0WIDQwU4vutGYiD.png" width="600" />
Our appreciation for the sponsors of Dolphin 2.9.3:
- [Crusoe Cloud](https://crusoe.ai/) - provided excellent on-demand 8xL40S node
This model is based on mistralai/Mistral-Nemo-Base-2407, and is governed by the apache 2.0 license.
The base model has 128K context, and our finetuning used 8192 sequence length.
Dolphin 2.9.3 uses ChatML prompt template format.
example:
```
<|im_start|>system
You are Dolphin, a helpful AI assistant.<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
```
Dolphin-2.9.3 has a variety of instruction following, conversational, and coding skills. It also has initial agentic abilities and supports function calling.
Dolphin is uncensored. We have filtered the dataset to remove alignment and bias. This makes the model more compliant. You are advised to implement your own alignment layer before exposing the model as a service. It will be highly compliant with any requests, even unethical ones. Please read my blog post about uncensored models. https://erichartford.com/uncensored-models You are responsible for any content you create using this model. Enjoy responsibly.
Dolphin is licensed according to apache 2.0 license. We grant permission for any use, including commercial. Dolphin was trained on data generated from GPT4, among other models.
## Evals
<details><summary>See evals</summary>
```
| Tasks |Version|Filter|n-shot| Metric | |Value | |Stderr|
|-----------------------------------------------------------|-------|------|-----:|-----------------------|---|-----:|---|------|
|leaderboard |N/A |none | 0|acc |↑ |0.3437|± |0.0043|
| | |none | 0|acc_norm |↑ |0.5076|± |0.0053|
| | |none | 0|exact_match |↑ |0.0536|± |0.0061|
| | |none | 0|inst_level_loose_acc |↑ |0.4388|± |N/A |
| | |none | 0|inst_level_strict_acc |↑ |0.3741|± |N/A |
| | |none | 0|prompt_level_loose_acc |↑ |0.3105|± |0.0199|
| | |none | 0|prompt_level_strict_acc|↑ |0.2477|± |0.0186|
| - leaderboard_bbh |N/A |none | 3|acc_norm |↑ |0.5549|± |0.0061|
| - leaderboard_bbh_boolean_expressions | 0|none | 3|acc_norm |↑ |0.8640|± |0.0217|
| - leaderboard_bbh_causal_judgement | 0|none | 3|acc_norm |↑ |0.6417|± |0.0352|
| - leaderboard_bbh_date_understanding | 0|none | 3|acc_norm |↑ |0.6080|± |0.0309|
| - leaderboard_bbh_disambiguation_qa | 0|none | 3|acc_norm |↑ |0.6480|± |0.0303|
| - leaderboard_bbh_formal_fallacies | 0|none | 3|acc_norm |↑ |0.5360|± |0.0316|
| - leaderboard_bbh_geometric_shapes | 0|none | 3|acc_norm |↑ |0.5240|± |0.0316|
| - leaderboard_bbh_hyperbaton | 0|none | 3|acc_norm |↑ |0.6440|± |0.0303|
| - leaderboard_bbh_logical_deduction_five_objects | 0|none | 3|acc_norm |↑ |0.4600|± |0.0316|
| - leaderboard_bbh_logical_deduction_seven_objects | 0|none | 3|acc_norm |↑ |0.4680|± |0.0316|
| - leaderboard_bbh_logical_deduction_three_objects | 0|none | 3|acc_norm |↑ |0.7000|± |0.0290|
| - leaderboard_bbh_movie_recommendation | 0|none | 3|acc_norm |↑ |0.8160|± |0.0246|
| - leaderboard_bbh_navigate | 0|none | 3|acc_norm |↑ |0.6040|± |0.0310|
| - leaderboard_bbh_object_counting | 0|none | 3|acc_norm |↑ |0.3680|± |0.0306|
| - leaderboard_bbh_penguins_in_a_table | 0|none | 3|acc_norm |↑ |0.5548|± |0.0413|
| - leaderboard_bbh_reasoning_about_colored_objects | 0|none | 3|acc_norm |↑ |0.6320|± |0.0306|
| - leaderboard_bbh_ruin_names | 0|none | 3|acc_norm |↑ |0.7440|± |0.0277|
| - leaderboard_bbh_salient_translation_error_detection | 0|none | 3|acc_norm |↑ |0.5280|± |0.0316|
| - leaderboard_bbh_snarks | 0|none | 3|acc_norm |↑ |0.6292|± |0.0363|
| - leaderboard_bbh_sports_understanding | 0|none | 3|acc_norm |↑ |0.8040|± |0.0252|
| - leaderboard_bbh_temporal_sequences | 0|none | 3|acc_norm |↑ |0.4680|± |0.0316|
| - leaderboard_bbh_tracking_shuffled_objects_five_objects | 0|none | 3|acc_norm |↑ |0.2160|± |0.0261|
| - leaderboard_bbh_tracking_shuffled_objects_seven_objects| 0|none | 3|acc_norm |↑ |0.1160|± |0.0203|
| - leaderboard_bbh_tracking_shuffled_objects_three_objects| 0|none | 3|acc_norm |↑ |0.3000|± |0.0290|
| - leaderboard_bbh_web_of_lies | 0|none | 3|acc_norm |↑ |0.4880|± |0.0317|
| - leaderboard_gpqa |N/A |none | 0|acc_norm |↑ |0.3146|± |0.0135|
| - leaderboard_gpqa_diamond | 1|none | 0|acc_norm |↑ |0.3182|± |0.0332|
| - leaderboard_gpqa_extended | 1|none | 0|acc_norm |↑ |0.3187|± |0.0200|
| - leaderboard_gpqa_main | 1|none | 0|acc_norm |↑ |0.3080|± |0.0218|
| - leaderboard_ifeval | 2|none | 0|inst_level_loose_acc |↑ |0.4388|± |N/A |
| | |none | 0|inst_level_strict_acc |↑ |0.3741|± |N/A |
| | |none | 0|prompt_level_loose_acc |↑ |0.3105|± |0.0199|
| | |none | 0|prompt_level_strict_acc|↑ |0.2477|± |0.0186|
| - leaderboard_math_algebra_hard | 1|none | 4|exact_match |↑ |0.0749|± |0.0150|
| - leaderboard_math_counting_and_prob_hard | 1|none | 4|exact_match |↑ |0.0244|± |0.0140|
| - leaderboard_math_geometry_hard | 1|none | 4|exact_match |↑ |0.0227|± |0.0130|
| - leaderboard_math_hard |N/A |none | 4|exact_match |↑ |0.0536|± |0.0061|
| - leaderboard_math_intermediate_algebra_hard | 1|none | 4|exact_match |↑ |0.0250|± |0.0093|
| - leaderboard_math_num_theory_hard | 1|none | 4|exact_match |↑ |0.0390|± |0.0156|
| - leaderboard_math_prealgebra_hard | 1|none | 4|exact_match |↑ |0.1295|± |0.0242|
| - leaderboard_math_precalculus_hard | 1|none | 4|exact_match |↑ |0.0296|± |0.0146|
| - leaderboard_mmlu_pro | 0.1|none | 5|acc |↑ |0.3437|± |0.0043|
| - leaderboard_musr |N/A |none | 0|acc_norm |↑ |0.4511|± |0.0178|
| - leaderboard_musr_murder_mysteries | 1|none | 0|acc_norm |↑ |0.5880|± |0.0312|
| - leaderboard_musr_object_placements | 1|none | 0|acc_norm |↑ |0.3438|± |0.0297|
| - leaderboard_musr_team_allocation | 1|none | 0|acc_norm |↑ |0.4240|± |0.0313|
| Groups |Version|Filter|n-shot| Metric | |Value | |Stderr|
|------------------------|-------|------|-----:|-----------------------|---|-----:|---|------|
|leaderboard |N/A |none | 0|acc |↑ |0.3437|± |0.0043|
| | |none | 0|acc_norm |↑ |0.5076|± |0.0053|
| | |none | 0|exact_match |↑ |0.0536|± |0.0061|
| | |none | 0|inst_level_loose_acc |↑ |0.4388|± |N/A |
| | |none | 0|inst_level_strict_acc |↑ |0.3741|± |N/A |
| | |none | 0|prompt_level_loose_acc |↑ |0.3105|± |0.0199|
| | |none | 0|prompt_level_strict_acc|↑ |0.2477|± |0.0186|
| - leaderboard_bbh |N/A |none | 3|acc_norm |↑ |0.5549|± |0.0061|
| - leaderboard_gpqa |N/A |none | 0|acc_norm |↑ |0.3146|± |0.0135|
| - leaderboard_math_hard|N/A |none | 4|exact_match |↑ |0.0536|± |0.0061|
| - leaderboard_musr |N/A |none | 0|acc_norm |↑ |0.4511|± |0.0178|
```
</details><br>
## Training
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
base_model: /workspace/models/Mistral-Nemo-Base-2407
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
# load_in_4bit: true
strict: false
datasets:
- path: /workspace/datasets/dolphin-2.9.3/dolphin201-sharegpt2.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9.3/SystemChat_filtered_sharegpt.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9.3/SystemChat_multilingual_sharegpt.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9.3/dolphin-coder-translate-sharegpt2.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9.3/dolphin-coder-codegen-sharegpt2.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9.3/m-a-p_Code-Feedback-sharegpt-unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9.3/m-a-p_CodeFeedback-Filtered-Instruction-sharegpt-unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9.3/not_samantha_norefusals.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9.3/Orca-Math-resort-unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9.3/agent_instruct_react_unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9.3/toolbench_instruct_j1s1_3k_unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9.3/toolbench_negative_unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9.3/toolbench_react_10p_unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9.3/toolbench_tflan_cot_30p_unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9.3/openhermes200k_unfiltered.jsonl
type: sharegpt
conversation: chatml
chat_template: chatml
# adapter: qlora
# lora_r: 128
# lora_alpha: 16
# lora_modules_to_save: [embed_tokens, lm_head]
# lora_dropout: 0.05
# lora_target_linear: true
unfrozen_parameters:
- ^lm_head.weight$
- ^model.embed_tokens.weight$
- input_layernorm
- model.norm
- post_attention_layernorm
- self_attn.rotary_emb
# mlp.down_proj layers
- model.layers.0.mlp.down_proj
- model.layers.1.mlp.down_proj
- model.layers.4.mlp.down_proj
- model.layers.37.mlp.down_proj
- model.layers.24.mlp.down_proj
- model.layers.2.mlp.down_proj
- model.layers.38.mlp.down_proj
- model.layers.35.mlp.down_proj
- model.layers.25.mlp.down_proj
- model.layers.6.mlp.down_proj
- model.layers.22.mlp.down_proj
- model.layers.23.mlp.down_proj
- model.layers.3.mlp.down_proj
- model.layers.21.mlp.down_proj
- model.layers.5.mlp.down_proj
- model.layers.28.mlp.down_proj
- model.layers.20.mlp.down_proj
- model.layers.26.mlp.down_proj
- model.layers.19.mlp.down_proj
- model.layers.34.mlp.down_proj
# mlp.gate_proj layers
- model.layers.2.mlp.gate_proj
- model.layers.1.mlp.gate_proj
- model.layers.3.mlp.gate_proj
- model.layers.5.mlp.gate_proj
- model.layers.4.mlp.gate_proj
- model.layers.35.mlp.gate_proj
- model.layers.36.mlp.gate_proj
- model.layers.37.mlp.gate_proj
- model.layers.38.mlp.gate_proj
- model.layers.34.mlp.gate_proj
- model.layers.33.mlp.gate_proj
- model.layers.8.mlp.gate_proj
- model.layers.32.mlp.gate_proj
- model.layers.6.mlp.gate_proj
- model.layers.28.mlp.gate_proj
- model.layers.26.mlp.gate_proj
- model.layers.30.mlp.gate_proj
- model.layers.23.mlp.gate_proj
- model.layers.29.mlp.gate_proj
- model.layers.27.mlp.gate_proj
# mlp.up_proj layers
- model.layers.3.mlp.up_proj
- model.layers.4.mlp.up_proj
- model.layers.6.mlp.up_proj
- model.layers.2.mlp.up_proj
- model.layers.5.mlp.up_proj
- model.layers.8.mlp.up_proj
- model.layers.10.mlp.up_proj
- model.layers.9.mlp.up_proj
- model.layers.7.mlp.up_proj
- model.layers.0.mlp.up_proj
- model.layers.17.mlp.up_proj
- model.layers.15.mlp.up_proj
- model.layers.22.mlp.up_proj
- model.layers.18.mlp.up_proj
- model.layers.16.mlp.up_proj
- model.layers.11.mlp.up_proj
- model.layers.21.mlp.up_proj
- model.layers.23.mlp.up_proj
- model.layers.20.mlp.up_proj
- model.layers.27.mlp.up_proj
# self_attn.k_proj layers
- model.layers.30.self_attn.k_proj
- model.layers.27.self_attn.k_proj
- model.layers.25.self_attn.k_proj
- model.layers.33.self_attn.k_proj
- model.layers.26.self_attn.k_proj
- model.layers.31.self_attn.k_proj
- model.layers.35.self_attn.k_proj
- model.layers.39.self_attn.k_proj
- model.layers.22.self_attn.k_proj
- model.layers.24.self_attn.k_proj
- model.layers.21.self_attn.k_proj
- model.layers.28.self_attn.k_proj
- model.layers.23.self_attn.k_proj
- model.layers.36.self_attn.k_proj
- model.layers.20.self_attn.k_proj
- model.layers.37.self_attn.k_proj
- model.layers.29.self_attn.k_proj
- model.layers.32.self_attn.k_proj
- model.layers.16.self_attn.k_proj
- model.layers.18.self_attn.k_proj
# self_attn.o_proj layers
- model.layers.7.self_attn.o_proj
- model.layers.6.self_attn.o_proj
- model.layers.9.self_attn.o_proj
- model.layers.5.self_attn.o_proj
- model.layers.27.self_attn.o_proj
- model.layers.26.self_attn.o_proj
- model.layers.4.self_attn.o_proj
- model.layers.31.self_attn.o_proj
- model.layers.8.self_attn.o_proj
- model.layers.16.self_attn.o_proj
- model.layers.3.self_attn.o_proj
- model.layers.10.self_attn.o_proj
- model.layers.18.self_attn.o_proj
- model.layers.33.self_attn.o_proj
- model.layers.17.self_attn.o_proj
- model.layers.32.self_attn.o_proj
- model.layers.30.self_attn.o_proj
- model.layers.2.self_attn.o_proj
- model.layers.15.self_attn.o_proj
- model.layers.11.self_attn.o_proj
# self_attn.q_proj layers
- model.layers.14.self_attn.q_proj
- model.layers.11.self_attn.q_proj
- model.layers.15.self_attn.q_proj
- model.layers.9.self_attn.q_proj
- model.layers.8.self_attn.q_proj
- model.layers.18.self_attn.q_proj
- model.layers.12.self_attn.q_proj
- model.layers.13.self_attn.q_proj
- model.layers.19.self_attn.q_proj
- model.layers.16.self_attn.q_proj
- model.layers.10.self_attn.q_proj
- model.layers.17.self_attn.q_proj
- model.layers.7.self_attn.q_proj
- model.layers.5.self_attn.q_proj
- model.layers.20.self_attn.q_proj
- model.layers.3.self_attn.q_proj
- model.layers.26.self_attn.q_proj
- model.layers.27.self_attn.q_proj
- model.layers.28.self_attn.q_proj
- model.layers.33.self_attn.q_proj
# self_attn.v_proj layers
- model.layers.27.self_attn.v_proj
- model.layers.20.self_attn.v_proj
- model.layers.24.self_attn.v_proj
- model.layers.25.self_attn.v_proj
- model.layers.30.self_attn.v_proj
- model.layers.2.self_attn.v_proj
- model.layers.23.self_attn.v_proj
- model.layers.22.self_attn.v_proj
- model.layers.26.self_attn.v_proj
- model.layers.33.self_attn.v_proj
- model.layers.37.self_attn.v_proj
- model.layers.7.self_attn.v_proj
- model.layers.4.self_attn.v_proj
- model.layers.18.self_attn.v_proj
- model.layers.31.self_attn.v_proj
- model.layers.17.self_attn.v_proj
- model.layers.35.self_attn.v_proj
- model.layers.32.self_attn.v_proj
- model.layers.21.self_attn.v_proj
- model.layers.3.self_attn.v_proj
dataset_prepared_path: /workspace/axolotl/dolph-2.9.3-nemo-prepared
val_set_size: 0.01
output_dir: /workspace/axolotl/dolphin-2.9.3-mistral-nemo
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
wandb_project: dolphin-2.9.3-Mistral-nemo
wandb_watch:
wandb_run_id:
wandb_log_model:
gradient_accumulation_steps: 16
micro_batch_size: 1
num_epochs: 3
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 5e-6
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32:
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 100
# evals_per_epoch: 4
eval_table_size:
saves_per_epoch: 1
save_total_limit: 2
save_steps:
debug:
deepspeed: deepspeed_configs/zero3_bf16.json
weight_decay: 0.1
special_tokens:
eos_token: "<|im_end|>"
pad_token: "<pad>"
bos_token: "<s>"
unk_token: "<unk>"
tokens:
- "<|im_start|>"
# fsdp:
# - full_shard
# - auto_wrap
# fsdp_config:
# fsdp_limit_all_gathers: true
# fsdp_sync_module_states: true
# fsdp_offload_params: true
# fsdp_use_orig_params: false
# fsdp_cpu_ram_efficient_loading: true
# fsdp_transformer_layer_cls_to_wrap: MixtralSparseMoeBlock
# fsdp_state_dict_type: FULL_STATE_DICT
# fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
# fsdp_sharding_strategy: FULL_SHARD
# fsdp_forward_prefetch: false
# fsdp_backward_prefetch: BACKWARD_PRE
```
</details><br>
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/ehartford/dolphin-2.9.3-Mistral-nemo/runs/c23odyoj)
# workspace/axolotl/dolphin-2.9.3-mistral-nemo
This model was trained from scratch on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5605
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.5691 | 1.0162 | 983 | 0.5734 |
| 0.5335 | 2.0174 | 1968 | 0.5609 |
| 0.5297 | 2.9639 | 2901 | 0.5605 |
### Framework versions
- Transformers 4.43.0.dev0
- Pytorch 2.2.2+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|