--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice_11_0 metrics: - wer model-index: - name: openai/whisper-medium results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_11_0 type: common_voice_11_0 config: ga-IE split: test args: ga-IE metrics: - name: Wer type: wer value: 32.955865272938446 --- # openai/whisper-medium This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the common_voice_11_0 dataset. It achieves the following results on the evaluation set: - Loss: 1.0432 - Wer: 32.9559 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 7000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.2448 | 1.02 | 1000 | 0.8498 | 41.7538 | | 0.0367 | 2.04 | 2000 | 0.8609 | 35.7724 | | 0.0095 | 3.06 | 3000 | 0.9109 | 34.9303 | | 0.0048 | 4.09 | 4000 | 0.9602 | 34.3496 | | 0.0009 | 5.11 | 5000 | 1.0041 | 33.2172 | | 0.0003 | 7.01 | 6000 | 1.0362 | 33.1010 | | 0.0006 | 8.03 | 7000 | 1.0432 | 32.9559 | ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.9.1.dev0 - Tokenizers 0.13.2