--- language: ["ru"] tags: - russian - classification - toxicity - multilabel widget: - text: "Иди ты нафиг!" --- This is the [cointegrated/rubert-tiny](https://huggingface.co/cointegrated/rubert-tiny) model fine-tuned for classification of toxicity and inappropriateness for short informal Russian texts, such as comments in social networks. The problem is formulated as multilabel classification with the following classes: - `non-toxic`: the text does NOT contain insults, obscenities, and threats, in the sense of the [OK ML Cup](https://cups.mail.ru/ru/tasks/1048) competition. - `insult` - `obscenity` - `threat` - `dangerous`: the text is inappropriate, in the sense of [Babakov et.al.](https://arxiv.org/abs/2103.05345), i.e. it can harm the reputation of the speaker. A text can be considered safe if it is BOTH `non-toxic` and NOT `dangerous`. ## Usage The function below estimates the probability that the text is either toxic OR dangerous: ```python # !pip install transformers sentencepiece --quiet import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification model_checkpoint = 'cointegrated/rubert-tiny-toxicity' tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) model = AutoModelForSequenceClassification.from_pretrained(model_checkpoint) if torch.cuda.is_available(): model.cuda() def text2toxicity(text, aggregate=True): """ Calculate toxicity of a text (if aggregate=True) or a vector of toxicity aspects (if aggregate=False)""" with torch.no_grad(): inputs = tokenizer(text, return_tensors='pt', truncation=True, padding=True).to(model.device) proba = torch.sigmoid(model(**inputs).logits).cpu().numpy() if isinstance(text, str): proba = proba[0] if aggregate: return 1 - proba.T[0] * (1 - proba.T[-1]) return proba print(text2toxicity('я люблю нигеров', True)) # 0.57240640889815 print(text2toxicity('я люблю нигеров', False)) # [9.9336821e-01 6.1555761e-03 1.2781911e-03 9.2758919e-04 5.6955177e-01] print(text2toxicity(['я люблю нигеров', 'я люблю африканцев'], True)) # [0.5724064 0.20111847] print(text2toxicity(['я люблю нигеров', 'я люблю африканцев'], False)) # [[9.9336821e-01 6.1555761e-03 1.2781911e-03 9.2758919e-04 5.6955177e-01] # [9.9828428e-01 1.1138428e-03 1.1492912e-03 4.6551935e-04 1.9974548e-01]] ``` ## Training The model has been trained on the joint dataset of [OK ML Cup](https://cups.mail.ru/ru/tasks/1048) and [Babakov et.al.](https://arxiv.org/abs/2103.05345) with `Adam` optimizer, learning rate of `1e-5`, and batch size of `64` for `15` epochs. A text was considered inappropriate if its inappropritateness score was higher than 0.8, and appropriate - if it was lower than 0.2. The per-label ROC AUC on the dev set is: ``` non-toxic : 0.9937 insult : 0.9912 obscenity : 0.9881 threat : 0.9910 dangerous : 0.8295 ```