File size: 1,415 Bytes
2998692 221d5af 9c962ee 221d5af 9c962ee 221d5af 2998692 221d5af 2998692 9c962ee 2998692 49aebcd 2998692 221d5af 2998692 221d5af 2998692 221d5af 2998692 221d5af 2998692 221d5af 2998692 221d5af 2998692 221d5af 2998692 221d5af 2998692 221d5af 2998692 221d5af 2998692 221d5af 6211caf 2998692 221d5af 2998692 221d5af 6211caf 221d5af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
---
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
- generated_from_trainer
datasets:
- gtzan
model-index:
- name: ft-hubert-on-gtzan
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ft-hubert-on-gtzan
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the gtzan dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 100
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 100 | 1.8948 | 0.46 |
### Framework versions
- Transformers 4.37.2
- Pytorch 2.0.1+cu118
- Datasets 2.17.0
- Tokenizers 0.15.2
|