File size: 1,415 Bytes
2998692
221d5af
 
 
 
 
9c962ee
221d5af
9c962ee
221d5af
2998692
 
221d5af
 
2998692
9c962ee
2998692
49aebcd
2998692
221d5af
2998692
221d5af
2998692
221d5af
2998692
221d5af
2998692
221d5af
2998692
221d5af
2998692
221d5af
2998692
221d5af
2998692
221d5af
 
 
 
 
 
 
 
 
 
 
 
2998692
221d5af
2998692
221d5af
 
64c69ab
2998692
 
221d5af
2998692
221d5af
64c69ab
221d5af
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
---
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
- generated_from_trainer
datasets:
- gtzan
model-index:
- name: ft-hubert-on-gtzan
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# ft-hubert-on-gtzan

This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the gtzan dataset.

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 100
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 1.0   | 100  | 1.9054          | 0.445    |


### Framework versions

- Transformers 4.37.2
- Pytorch 2.0.1+cu118
- Datasets 2.17.0
- Tokenizers 0.15.2