Added the weak baseline model readme and eval script
Browse files
README.md
CHANGED
@@ -1,3 +1,131 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
language: cs
|
2 |
+
datasets:
|
3 |
+
- mozilla-foundation/common_voice_8_0
|
4 |
+
metrics:
|
5 |
+
- wer
|
6 |
+
tags:
|
7 |
+
- generated_from_trainer
|
8 |
+
- audio
|
9 |
+
- automatic-speech-recognition
|
10 |
+
- speech
|
11 |
+
- xlsr-fine-tuning-week
|
12 |
+
license: apache-2.0
|
13 |
+
model-index:
|
14 |
+
- name: Czech comodoro Wav2Vec2 XLSR 300M CV8
|
15 |
+
results:
|
16 |
+
- task:
|
17 |
+
name: Speech Recognition
|
18 |
+
type: automatic-speech-recognition
|
19 |
+
dataset:
|
20 |
+
name: Common Voice 8.0 cs
|
21 |
+
type: mozilla-foundation/common_voice_8_0
|
22 |
+
args: cs
|
23 |
+
metrics:
|
24 |
+
- name: Test WER
|
25 |
+
type: wer
|
26 |
+
value: 0.47455377483706096
|
27 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
28 |
+
should probably proofread and complete it, then remove this comment. -->
|
29 |
+
|
30 |
+
# wav2vec2-xls-r-300m-cs-cv8
|
31 |
+
|
32 |
+
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice 8.0 dataset.
|
33 |
+
It achieves the following results on the evaluation set:
|
34 |
+
- WER: 0.47455377483706096
|
35 |
+
- CER: 0.10877155235645618
|
36 |
+
|
37 |
+
## Model description
|
38 |
+
|
39 |
+
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Czech using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset.
|
40 |
+
When using this model, make sure that your speech input is sampled at 16kHz.
|
41 |
+
|
42 |
+
|
43 |
+
The model can be used directly (without a language model) as follows:
|
44 |
+
|
45 |
+
```python
|
46 |
+
import torch
|
47 |
+
import torchaudio
|
48 |
+
from datasets import load_dataset
|
49 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
50 |
+
|
51 |
+
test_dataset = load_dataset("mozilla-foundation/common_voice_8_0", "cs", split="test[:2%]")
|
52 |
+
|
53 |
+
processor = Wav2Vec2Processor.from_pretrained("comodoro/wav2vec2-xls-r-300m-cs-cv8")
|
54 |
+
model = Wav2Vec2ForCTC.from_pretrained("comodoro/wav2vec2-xls-r-300m-cs-cv8")
|
55 |
+
|
56 |
+
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
57 |
+
|
58 |
+
# Preprocessing the datasets.
|
59 |
+
# We need to read the aduio files as arrays
|
60 |
+
def speech_file_to_array_fn(batch):
|
61 |
+
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
62 |
+
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
63 |
+
return batch
|
64 |
+
|
65 |
+
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
66 |
+
inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
67 |
+
|
68 |
+
with torch.no_grad():
|
69 |
+
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
|
70 |
+
|
71 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
72 |
+
|
73 |
+
print("Prediction:", processor.batch_decode(predicted_ids))
|
74 |
+
print("Reference:", test_dataset[:2]["sentence"])
|
75 |
+
```
|
76 |
+
|
77 |
+
## Evaluation
|
78 |
+
|
79 |
+
The model can be evaluated using the attached `eval.py` script.
|
80 |
+
|
81 |
+
## Training and evaluation data
|
82 |
+
|
83 |
+
The Common Voice 8.0 `train` and `validation` datasets were used for training
|
84 |
+
|
85 |
+
## Training procedure
|
86 |
+
|
87 |
+
### Training hyperparameters
|
88 |
+
|
89 |
+
The following hyperparameters were used during training:
|
90 |
+
- learning_rate: 7e-05
|
91 |
+
- train_batch_size: 32
|
92 |
+
- eval_batch_size: 8
|
93 |
+
- seed: 42
|
94 |
+
- gradient_accumulation_steps: 20
|
95 |
+
- total_train_batch_size: 640
|
96 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
97 |
+
- lr_scheduler_type: linear
|
98 |
+
- lr_scheduler_warmup_steps: 500
|
99 |
+
- num_epochs: 150
|
100 |
+
- mixed_precision_training: Native AMP
|
101 |
+
|
102 |
+
### Training results
|
103 |
+
|
104 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|
105 |
+
|:-------------:|:------:|:----:|:---------------:|:------:|:------:|
|
106 |
+
| 7.2926 | 8.06 | 250 | 3.8497 | 1.0 | 1.0 |
|
107 |
+
| 3.417 | 16.13 | 500 | 3.2852 | 1.0 | 0.9857 |
|
108 |
+
| 2.0264 | 24.19 | 750 | 0.7099 | 0.7342 | 0.1768 |
|
109 |
+
| 0.4018 | 32.25 | 1000 | 0.6188 | 0.6415 | 0.1551 |
|
110 |
+
| 0.2444 | 40.32 | 1250 | 0.6632 | 0.6362 | 0.1600 |
|
111 |
+
| 0.1882 | 48.38 | 1500 | 0.6070 | 0.5783 | 0.1388 |
|
112 |
+
| 0.153 | 56.44 | 1750 | 0.6425 | 0.5720 | 0.1377 |
|
113 |
+
| 0.1214 | 64.51 | 2000 | 0.6363 | 0.5546 | 0.1337 |
|
114 |
+
| 0.1011 | 72.57 | 2250 | 0.6310 | 0.5222 | 0.1224 |
|
115 |
+
| 0.0879 | 80.63 | 2500 | 0.6353 | 0.5258 | 0.1253 |
|
116 |
+
| 0.0782 | 88.7 | 2750 | 0.6078 | 0.4904 | 0.1127 |
|
117 |
+
| 0.0709 | 96.76 | 3000 | 0.6465 | 0.4960 | 0.1154 |
|
118 |
+
| 0.0661 | 104.82 | 3250 | 0.6622 | 0.4945 | 0.1166 |
|
119 |
+
| 0.0616 | 112.89 | 3500 | 0.6440 | 0.4786 | 0.1104 |
|
120 |
+
| 0.0579 | 120.95 | 3750 | 0.6815 | 0.4887 | 0.1144 |
|
121 |
+
| 0.0549 | 129.03 | 4000 | 0.6603 | 0.4780 | 0.1105 |
|
122 |
+
| 0.0527 | 137.09 | 4250 | 0.6652 | 0.4749 | 0.1090 |
|
123 |
+
| 0.0506 | 145.16 | 4500 | 0.6958 | 0.4846 | 0.1133 |
|
124 |
+
|
125 |
+
|
126 |
+
### Framework versions
|
127 |
+
|
128 |
+
- Transformers 4.16.0.dev0
|
129 |
+
- Pytorch 1.10.1+cu102
|
130 |
+
- Datasets 1.17.1.dev0
|
131 |
+
- Tokenizers 0.11.0
|
eval.py
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
from datasets import load_dataset, load_metric, Audio, Dataset
|
3 |
+
from transformers import pipeline, AutoFeatureExtractor
|
4 |
+
import re
|
5 |
+
import argparse
|
6 |
+
import unicodedata
|
7 |
+
from typing import Dict
|
8 |
+
|
9 |
+
|
10 |
+
def log_results(result: Dataset, args: Dict[str, str]):
|
11 |
+
""" DO NOT CHANGE. This function computes and logs the result metrics. """
|
12 |
+
|
13 |
+
log_outputs = args.log_outputs
|
14 |
+
dataset_id = "_".join(args.dataset.split("/") + [args.config, args.split])
|
15 |
+
|
16 |
+
# load metric
|
17 |
+
wer = load_metric("wer")
|
18 |
+
cer = load_metric("cer")
|
19 |
+
|
20 |
+
# compute metrics
|
21 |
+
wer_result = wer.compute(references=result["target"], predictions=result["prediction"])
|
22 |
+
cer_result = cer.compute(references=result["target"], predictions=result["prediction"])
|
23 |
+
|
24 |
+
# print & log results
|
25 |
+
result_str = (
|
26 |
+
f"WER: {wer_result}\n"
|
27 |
+
f"CER: {cer_result}"
|
28 |
+
)
|
29 |
+
print(result_str)
|
30 |
+
|
31 |
+
with open(f"{dataset_id}_eval_results.txt", "w") as f:
|
32 |
+
f.write(result_str)
|
33 |
+
|
34 |
+
# log all results in text file. Possibly interesting for analysis
|
35 |
+
if log_outputs is not None:
|
36 |
+
pred_file = f"log_{dataset_id}_predictions.txt"
|
37 |
+
target_file = f"log_{dataset_id}_targets.txt"
|
38 |
+
|
39 |
+
with open(pred_file, "w") as p, open(target_file, "w") as t:
|
40 |
+
|
41 |
+
# mapping function to write output
|
42 |
+
def write_to_file(batch, i):
|
43 |
+
p.write(f"{i}" + "\n")
|
44 |
+
p.write(batch["prediction"] + "\n")
|
45 |
+
t.write(f"{i}" + "\n")
|
46 |
+
t.write(batch["target"] + "\n")
|
47 |
+
|
48 |
+
result.map(write_to_file, with_indices=True)
|
49 |
+
|
50 |
+
|
51 |
+
def normalize_text(text: str) -> str:
|
52 |
+
""" DO ADAPT FOR YOUR USE CASE. this function normalizes the target text. """
|
53 |
+
|
54 |
+
|
55 |
+
CHARS = {
|
56 |
+
'ü': 'ue',
|
57 |
+
'ö': 'oe',
|
58 |
+
'ï': 'i',
|
59 |
+
'ë': 'e',
|
60 |
+
'ä': 'ae',
|
61 |
+
'ã': 'a',
|
62 |
+
'à': 'á',
|
63 |
+
'ø': 'o',
|
64 |
+
'è': 'é',
|
65 |
+
'ê': 'é',
|
66 |
+
'å': 'ó',
|
67 |
+
'î': 'i',
|
68 |
+
'ñ': 'ň',
|
69 |
+
'ç': 's',
|
70 |
+
'ľ': 'l',
|
71 |
+
'ż': 'ž',
|
72 |
+
'ł': 'w',
|
73 |
+
'ć': 'č',
|
74 |
+
'þ': 't',
|
75 |
+
'ß': 'ss',
|
76 |
+
'ę': 'en',
|
77 |
+
'ą': 'an',
|
78 |
+
'æ': 'ae',
|
79 |
+
}
|
80 |
+
|
81 |
+
def replace_chars(sentence):
|
82 |
+
result = ''
|
83 |
+
for ch in sentence:
|
84 |
+
new = CHARS[ch] if ch in CHARS else ch
|
85 |
+
result += new
|
86 |
+
|
87 |
+
return result
|
88 |
+
|
89 |
+
chars_to_remove_regex = '[\,\?\.\!\-\;\:\/\"\“\„\%\”\�\–\'\`\«\»\—\’\…]'
|
90 |
+
|
91 |
+
text = text.lower()
|
92 |
+
# normalize non-standard (stylized) unicode characters
|
93 |
+
text = unicodedata.normalize('NFKC', text)
|
94 |
+
# remove punctuation
|
95 |
+
text = re.sub(chars_to_ignore_regex, "", text)
|
96 |
+
batch["sentence"] = replace_chars(batch['sentence'])
|
97 |
+
|
98 |
+
# Let's also make sure we split on all kinds of newlines, spaces, etc...
|
99 |
+
text = " ".join(text.split())
|
100 |
+
|
101 |
+
return text
|
102 |
+
|
103 |
+
|
104 |
+
def main(args):
|
105 |
+
# load dataset
|
106 |
+
dataset = load_dataset(args.dataset, args.config, split=args.split, use_auth_token=True)
|
107 |
+
|
108 |
+
# for testing: only process the first two examples as a test
|
109 |
+
# dataset = dataset.select(range(10))
|
110 |
+
|
111 |
+
# load processor
|
112 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(args.model_id)
|
113 |
+
sampling_rate = feature_extractor.sampling_rate
|
114 |
+
|
115 |
+
# resample audio
|
116 |
+
dataset = dataset.cast_column("audio", Audio(sampling_rate=sampling_rate))
|
117 |
+
|
118 |
+
# load eval pipeline
|
119 |
+
asr = pipeline("automatic-speech-recognition", model=args.model_id)
|
120 |
+
|
121 |
+
# map function to decode audio
|
122 |
+
def map_to_pred(batch):
|
123 |
+
prediction = asr(batch["audio"]["array"], chunk_length_s=args.chunk_length_s, stride_length_s=args.stride_length_s)
|
124 |
+
|
125 |
+
batch["prediction"] = prediction["text"]
|
126 |
+
batch["target"] = normalize_text(batch["sentence"])
|
127 |
+
return batch
|
128 |
+
|
129 |
+
# run inference on all examples
|
130 |
+
result = dataset.map(map_to_pred, remove_columns=dataset.column_names)
|
131 |
+
|
132 |
+
# compute and log_results
|
133 |
+
# do not change function below
|
134 |
+
log_results(result, args)
|
135 |
+
|
136 |
+
|
137 |
+
if __name__ == "__main__":
|
138 |
+
parser = argparse.ArgumentParser()
|
139 |
+
|
140 |
+
parser.add_argument(
|
141 |
+
"--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers"
|
142 |
+
)
|
143 |
+
parser.add_argument(
|
144 |
+
"--dataset", type=str, required=True, help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets"
|
145 |
+
)
|
146 |
+
parser.add_argument(
|
147 |
+
"--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice"
|
148 |
+
)
|
149 |
+
parser.add_argument(
|
150 |
+
"--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`"
|
151 |
+
)
|
152 |
+
parser.add_argument(
|
153 |
+
"--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to None. For long audio files a good value would be 5.0 seconds."
|
154 |
+
)
|
155 |
+
parser.add_argument(
|
156 |
+
"--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to None. For long audio files a good value would be 1.0 seconds."
|
157 |
+
)
|
158 |
+
parser.add_argument(
|
159 |
+
"--log_outputs", action='store_true', help="If defined, write outputs to log file for analysis."
|
160 |
+
)
|
161 |
+
args = parser.parse_args()
|
162 |
+
|
163 |
+
main(args)
|